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time is a cruel mistress
you seemingly have plenty
but some run out so suddenly

you need to make choices
what to spend your time on
too many options, interests

my choices led to this
I am. . . content
with those choices

now let me ask you
dear reader
are you?





Preface

So how did I end up writing this dissertation? Well, you could say there were
some signs that this was the direction I would take. Allow me to reminisce
here for a bit, before I tell you something about the book ‘design’ and then
acknowledge the many people who’ve been there for me over the years.

The Road to Nerding Out over Programming Languages

My parents like to tell the story of how my first exposure to computers was
at a very young age. My sister—two years my senior—excitedly showed me
how press a button on the computer to make Donald Duck quack. I don’t
remember this, I was too young, but I can recall the old computer in the living
room, a thick CRT screen with yellow tinged white plastic shell on a white,
formica desk.

My father was an SAP consultant for a good part of my youth, so we had a
nice enough computer in the living room, and dial-up internet, used sparingly
because of the cost. I grew up with an interest in many things, and although I
was quite computer literate1, I did not show much interest in programming.
This was all fine, my father is not the type to pressure his children into the
same career.

Secondary School. At some point in my mid teens, I got to do an extra course
in school which was presented to us as Programming in Java. I’m afraid I did
not learn any Java in that course, there was very little material that we got
taught in classroom lessons. But we did have a number of computers with
internet (ADSL by now), and so I mostly remember us kids figuring out how
to make little websites with JavaScript copied and pasted from websites with
collections of snippets.

With my interest already raised, my dad now offered to teach me a bit
of programming. He dug up a CD of Borland C++ from the big stack, and
grabbed his copy of Kernighan & Ritchie’s The C Programming Language. I
remember asking what studio dot h was, and learning that stdio.h was the
library for standard input/output. And that I didn’t get much further than a
temperature conversion command line program2, before going back to messing
with websites, since those had a faster, more visual feedback loop.

Nearing the end of secondary school, I was taking art classes as an elective.
Originally I had just wanted to do something with my hands instead of using
only my brain and writing skills, and it basically remained interesting and
fun so I stuck with it. In particular, I liked architecture, and together with my

1I could use office suite programs, an internet browser, and an image editor.
2You know, give a temperature in Celsius, and it will print what the temperature is in antiquated

units Fahrenheit.



interest in physics, I had figured out what I wanted to do. Architecture would
combine my interests in aesthetics, in physics and material properties, and to
some extent in the social function and liveability of buildings.

Programming websites was just a secondary hobby, where I was starting
to scratch an itch: the CSS language was underpowered and I was trying to
create an extension with variables and other code sharing features3.

The nearest university with an architecture programme was TU Delft, a
university that I figured had some international standing, since their student
teams were in the news about solar car racing in a competition abroad4. So
I went to the university’s open day and I filled in my three options to take a
look at: architecture, and the unnecessary backup options of computer science
and physics. I was very disappointed to learn that architecture was a study
programme strictly separate from civil engineering. My impression was that
I could learn about aesthetics and liveability at architecture, and learn about
physically achievable building design at civil engineering though they seemed
to prefer larger infrastructure design. There was also no mention of support
for a double bachelor, and besides, I wasn’t that good of a student, so I would
probably not have considered such a heavy programme.

Somewhat deflated, or maybe more frustrated (I was a teenager after all), I
continued to see about computer science and physics, and computer science
looked pretty neat. I was also lucky enough to have a friend one year ahead of
me in school, who had gone to Delft to do computer science, so I learned a
little about the programme through him.

Bachelor. And so I ended up in Delft, studying computer science. I found
myself so thoroughly enjoying the courses, that I knew I had made the right
choice pretty quickly and stopped feeling sore about architecture. Finding
myself scoring high grades again, I re-found the joy of learning interesting
things and getting good scores on tests. I also learned that as a student,
you could become a teaching assistant for a course the year after you had
successfully completed it. It looked easy, fun, and paid much better than my
previous part-time job stocking shelves at a grocery store.

Through that job as a teaching assistant is how I first got to know Eelco
Visser a little. He had taught Concepts of Programming Languages for the first
time in the year that I started my bachelor programme, and asked me to be
a TA for the subsequent year. I ended up being a TA for that course for five
years straight.

Eelco was a charismatic teacher with a real enthusiasm for the material he
taught. He pushed students to work hard and learn a lot, and as someone with
an interest in what he taught, I loved it. Which isn’t to say he didn’t have his
flaws, my usual gripe as a student applied to him as it did to most teachers: I
thought professors had less time and interest for teaching than for research.

3Since I did not know and had not found any material on compilers, I was doing some text
processing with regular expressions, and did not get very far before I learned about a project
named SASS that was doing the same I wanted to do.

4Yes, really, I based my impression of the international standing of a local university on national
news coverage; not an entirely sound argument eh?
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But as a TA I already learned that Eelco would work on everything until the
last minute, although it didn’t sink in until later just how ridiculously busy he
always was.

I doubt it’s surprising that I ended up doing my bachelor’s thesis project
with him. Through that project, I was first exposed to the Spoofax language
workbench. By the end of the thesis project, I told Eelco I wanted to do a
PhD. I had this romantic image of what doing research would be like... Eelco
told me it was a bit early to speak of PhDs. I could first do a master’s thesis
with his group, as long as I took their courses during my master. But if I still
wanted to do a PhD by the end of my master’s, he would make sure that he
had some funding for a position.

Master. I was hooked. I had already planned out my master’s programme
at TU Delft anyway, and that did already include the courses by Eelco and
his colleagues in the subgroup of Software Language Design Engineering5. By
naively assuming the master courses would take a similar amount of time as
the bachelor courses, I figured I could continue to take the courses that were
said to be hard (because those were the interesting ones to me) in combination
with some other things. In particular, I remained a TA for multiple courses,
and on top of it, I would try that Honours Programme thing that I had already
been invited to once during my bachelor.

In my hubris, I had thought I could just learn my limits this way by taking
on more things simultaneously. If it really turned out to be too much, I could
just tough it out and drop some things I had planned for later in the year, right?
What I hadn’t taken into consideration was that courses at the master level were
actually significantly more work, and that I did not like giving up on anything.
Of course the alternative was not exactly nice for others: I gave a bit of a bad
impression by asking Eelco what the minimum requirements were to finish
my honours programme project with him (yes, of course I went back to him). I
also, for the first time in my studies, did significantly less work than another
in a group project for a course. This was particularly embarrassing because
my partner in that project had picked me because I had a good reputation for
group work.

Despite these struggles, I managed to stay on schedule and as I got closer to
the time to pick a master’s thesis project, I was not too sure what I wanted. So
Eelco suggested a topic he had ready, for which I’d also go on an internship
in Silicon Valley. I remember well how I first agreed to do that, and only
then asked more details about the topic. It turned out that Eelco had good
connections with a research group within Oracle Labs, the research department
of Oracle. They had a compiler written in C++ for a domain specific language
called GreenMarl. A previous attempt at porting this compiler over to Spoofax
had failed, but they had a grammar available from that. I wasn’t surprised
they wanted to use Spoofax, I still had a minor vendetta against C++ after
my experience using it during my robotics minor during my BSc. I went to

5I had originally considered other focusses like computer graphics or intelligent systems, but
computer graphics seemed to require plenty of statistics, which I found a difficult, unintuitive
part of mathematics. For intelligent systems I hadn’t taken the right electives during my BSc.

Preface U vii



stay in California for 6 months to work on this GreenMarl compiler. My thesis
advisor in Delft was Guido Wachsmuth, who had also taught the Compiler
Construction course. He advised me to start writing early, which I earnestly
attempted a few times, but got stuck with fairly quickly. I ended up back in
Delft with a working GreenMarl compiler in Spoofax and very little on paper.
And while writing up what I’d done, I found that my intuitive understanding
of the static semantics of GreenMarl was challenging to write up. So I ended
up taking six months to write up everything, including a somewhat readable
formalisation of the static semantics of GreenMarl (the first ever published).
But I must have driven Guido a little crazy because I was not a good author
at the time. Nevertheless, he helped me through it, and after my defence he
advised me not to do a PhD because it would be the same writing struggle all
over again many times. Fair advice, but I wanted to follow through with my
plan that I had made long ago with much less information. I don’t like giving
up on things, remember? Silly, stubborn me.

PhD. With my troubles in writing and formalising things, Eelco thought it a
bad idea to put me on his Vici project which would very likely involve all kinds
of formalisations. I disagreed, but when Arjen Rouvoet later got that position,
he certainly did a stellar job. But Eelco kept his word, he had a position for
me from some left-over funds here, and some other money there, which he’d
gotten from the Extension School of TU Delft. He’d promised the Extension
School to have some teaching related research done with that money. I was not
convinced by the topic, which we discussed, but Eelco managed to persuade
me to try anyway. He said we’d see how I got along, and if I still didn’t like it
after a year, we could reconsider.

I lasted ten months, then I’d had enough. I didn’t like the topic, I missed
direction and supervision, and performing poorly had hurt my confidence.
My relationship with Eelco had suffered too, after a particular discussion we’d
had where he’d hurt my confidence even more. I still regret not clearing the
air about, I was being too conflict-avoiding, and now it’s too late. . .
Funny how I thought I’d simply put it behind me on my own, but now I think
back and wish I would have brought it up, even if it would have been years
later.

Nevertheless, after ten months, I declaimed that I needed a different topic.
I had three ideas of things I would be enthusiastic enough about to be more
self-motivating. One of them was to work on improving Stratego, but Eelco
preferred to work on that himself since he had some ideas. Another was a new
meta-language for control- and data-flow analysis. I don’t remember the third,
and it’s not really relevant here. We went with control- and data-flow analysis,
and that’s how I ended up truly starting on the work that you can read here,
in this dissertation.

The Book You’re Reading

Typesetting. I’ve been working on making my research presentable in this
book for a good while. Moving papers that may be in double-column style to a
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single column, smaller page, different margins document is painful. Especially
getting text and figures to end up somewhat close to each other when the
figures take up much more space than the text that comes with it. I also
micro-managed details such as eliminating final sentences of paragraphs that
go past a page turn (although I can’t promise I managed with all of them).

Typesetting is something you learn as a computer scientist with the LATEX
tooling, which is used in academic publishing. So I typeset things myself,
starting from the typesetting code of Gabriël Konat’s dissertation, which got
me started quickly. I’m passing on my typesetting code to the next PhD student
in our group, where it will probably grow further.

Cover. The cover design is based on a couple of ideas. I personally really
like the style period of Art Nouveau (a.k.a. Jugendstil or Modernisma), so
for the cover I took inspiration from the poster art of that period. I picked a
freely available derivative of the iconic Arnold Böcklin font for the lettering,
and reshaped the title to fit the surrounding image. Some of the background
elements are merely things from nature, as are often featured in Art Nouveau,
although I did pick two things to connect to the work: The tree refers to the
tree-shaped data that Stratego does transformations on, while the river is a
flow of water with some fish in it as FlowSpec looks at the flow of control and
data following it. Leaves come back in the typesetting as little ornaments here
and there. It might have been easier and prettier to get some professional help
with the cover, but I’ve had fun connecting with my much neglected artistic
side again.

Dedication. At first, I put an ironic For Science! in as (placeholder) dedication,
which I thought some of my meme-savvy friends might appreciate as a little
joke. Then I had some inspiration for free-form poetry, so I jotted that down.
Looking at it now. . . it’s a little strange, a little heavy. But I know the thoughts
and emotions behind the words, so I decided to leave it in.
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gave me great advice at just the right time, which resulted in the publication of
the work in Chapter 5; Robbert Krebbers taught me how to use proof assistants
and gave me a better understanding of the underlying theory of type systems;
Casper Bach Poulsen has been a welcome discussion partner on my research
interests and helping to keep Spoofax alive; And Peter Mosses has been a great
help in putting research into context with all the work that he has read about
and still keeps organised in his head. Peter suggested a particular formulation
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group to function within the university, you need someone who gets things
done. That would be the group secretary, which for years was Roniet Sharabi.
Roniet would check in with the PhD students once in a while, make sure we
were taking breaks and weren’t becoming too stressed. Roniet really extended
the general welcoming feeling of the PL group.
These days we have Shelley Dawn Stok as secretary after being without a
secretary for a while. It is a relief to have a good secretary again, and Shelley
certainly fits that role, thinking of our needs even before we do sometimes.

My fellow PhD students and postdocs of the group have been a great
support. This support included, but was not limited to, discussing (ongoing)
research, proof-reading paper drafts, co-authoring papers, discussing related
work, commiserating about difficult supervisors, discussing politics, life, or
other idle chitchat. I made a list of names of all the PhD students and postdocs
I’ve gotten to know through our research group, but after getting to 21 names,
I figured it would be a tedious list of names to read. If you were a PhD student,
postdoc, or something adjacent in the PL group in Delft and met me then,
know that I’ve thought of you explicitly while writing this, and I appreciate
the time we spent together.

Similarly, during my time as a PhD student of the group, I spent time during
my tea breaks to distract some master students from working on their thesis
projects. I remember chatting with Martijn Dwars, Maarten Sijm, Taico Aerts,
Chiel Bruin, Bram Crielaard, and more. We would talk about their work,
sometimes mine, and plenty of the time about other things in life. I ended up
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playing an old video game with Maarten, Taico, and Chiel: Age of Empires II.
We’re still friends, we still play the game every other week.

I was also lucky to get to supervise two great master students for their thesis
projects: Toine Hartman and Matthijs Bijman. Both Toine and Matthijs were
wonderful, motivated students whom I enjoyed working with. I reference their
theses in the conclusion of this dissertation.

Apart from a video game now and again, I have played many many board
games over the last years. The main culprit who got me into board games is
Christoph Lofi. I met this quirky professor of the Web Information Systems
research group by virtue of working on the same floor, and we became friends
over the many Wednesday night board game sessions at his house. We still
play once or twice a month, still with a mixture of people that we rope in with
promises of a shared meal and a fun evening.

Apart from playing board games at Christoph’s, I’ve also done the same
with friends from the PL group: Gabriël Konat, Daniël Pelsmaeker, and Jesper
Cockx. We even managed to finish the entire campaign game of Gloomhaven
including the Forgotten Circle which finished the story on the Gloom.

As if I didn’t have enough of my evenings taken up by complex board games,
Danny Groenewegen invited me into his old group of university friends to play
Magic the Gathering: a trading card game that can be arbitrarily complicated
as you build your own deck of card and each card can change the rules of the
game. Gabriël and Daniël joined sometimes as well, but the new faces I got
to know were those of Ruben Wieman, Boaz Pat-El, Joost Heijkoop, Michel
Deconinck, and Daniël van Gelderen. I’m very grateful for Ruben, who helped
me out during the first summer of the COVID-19 pandemic. I was still living
in student housing, and Ruben offered me the option to work from the living
room of his house, on the other side of the room from where he was working
from home.

Over the years, before and after the pandemic, I managed to learn the card
game we played on weekend days. I would borrow the decks of cards of the
other players, and marvel at the artwork, the strange mechanics, and the clever
combinations they came up with. I managed to avoid buying my own cards
and designing my own decks for a long time. But at some point, after many
years, I found myself trying my hand at a deck design. It did not take long
for the other people in our group to collude and give me some cards for my
birthday, to get me started with the hobby. It worked, I now have two decks of
my own design and I am testing new designs sometimes.

Speaking of the time I spent in student housing: I was lucky to be able to
even get some student housing in Delft at the time. Daco Harkes was a fellow
PhD student in our research group at the time who lived in a 2 bedroom,
shared kitchen and bathroom student housing situation when his housemate
left. He asked me if I was interested the place, so I had a look and a chat with
him and ended up taking the room. It is funny how Daco wasn’t necessarily a
person I would have normally befriended, but he was a very good housemate
who could communicate clearly and was easy going. We ended up eating
many an evening meal together, and had deep conversations about life, politics,
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religion, and more. I’m grateful for the opportunity Daco gave me to live in
Delft, which allowed me to expand my social circles in all the ways I’ve already
mentioned above and will expand on for one more page.

I joined local badminton club ‘Swetiday’ in Delft after playing there for a few
Fridays with some of my colleagues from university. We originally picked the
club because they offered the option to pay per evening and we didn’t know
how many times we might go and play. I ended up being the only one playing
regularly, and so I joined the club as a member and got to know many new
people there. Although none of us knew at first, through this club I met the
father of one of the master students doing his thesis project with our PL group.
Funny how those things go, it fits the argument that Delft feels like a small
town.

During the pandemic, a group of friends that know each other through
badminton started a ‘bootcamp’ group to keep exercising, outside, at an
appropriate distance from one another. When I learned about this group I
expressed my interest in joining and was invited. It turned out that during
normal times, this group of friends would also go hiking or spend winter
sports holidays together. I had accidentally joined more than an opportunity to
do some sports, I joined a wonderful group of friends. By now I’ve been invited
to people’s homes, met their families, and been along for a long weekend of
hiking in Limburg. I feel fortunate to have met more wonderful friends, who
have welcomed me into their group.

Apart from all the new friends I made as I moved to Delft for my PhD, I still
have some friends from before then too. As I mentioned, I studied in Delft
for my bachelor’s and master’s too, but commuted from my parent’s house
at the time. During those years I met the jolly group of friends we now call
Aajeto, after the time most of them lived together in Delft: Jelle Licht, Felix
Akkermans, Maarten van Beek, and Thomas van Helden. I fondly recall the
dinners we made and ate together, paranoid fiction films we watched, that
night we stayed up late and tried to write mods for Call of Duty 1, and then
played them, and other times where I slept on the couch because I’d stayed
too long and the bus home had stopped for the night.

During my master’s degree I went on an internship in the US, where I
was welcomed by a fairly international team of people. These were all very
wonderful colleagues who invited us interns to barbecues and went along to
touristy things we would do as newly arrived interns. I met a particular good
friend there in Alexander Weld, who I kept in touch with, and have continued
to meet up with whenever we were relatively close to each other, for example
due to my being at a conference in the US, or him (temporarily) working at an
office in Europe. Alex got me addicted to another video game, called Duck
Game, and we’ve had many laughs over the silly ways we messed up that in
fast-paced game, and have had many (for me) late night conversations online
where we’d planned to play that game but instead just mostly talked.

I could mention more friends I’ve spent time with during my PhD, like
Vivian van der Werf (who I’ve known since secondary school!), or the student
association I joined, but this preface is taking on ridiculous proportions already.
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Have I mentioned how one my teachers in secondary school told me that one
of my weaknesses is summarisation, keeping things short and to the point?
Anyway, the connection between these friends, some of which I don’t see
regularly through university or sports, is mostly that I wish I could see them
more often. Life can get arbitrarily busy, and I often wish there were more
hours in a day. I guess I should have studied theoretical physics after all.

Jeff Smits
16th August 2023

Delft
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English Summary

Computers execute software to do the tasks we expect from them. This
software is written by human beings, we call this programming. The most
common way to program is by writing text in a programming language. A
programming language is very structured so we can be precise, but ultimately
these languages are still for humans to read and write. In order to execute the
written program, we need to translate it to a list of tiny instruction steps that
the hardware of the computer can execute. This translation is also automated
with software. The most common forms this software takes is (1) interpreters
that execute a program live as they read it, or (2) compilers that translate the
entire program for later execution.

Interpreters and compilers are tools of the domain of Programming Lan-
guages (PL). Apart from interpreters and compilers, there is more support
software available around programming languages. This includes smart text
editors, program analysis, running-program observers, etc. The requirements
for PL tools are high: they should not get in the way when used to create
software. In particular, they should support useful features, be fast enough in
interaction, and not make mistakes.

Given these requirements, it is not a simple task to make PL tools. In an
effort to make it easier to create PL tools, Language Workbenches (LWBs) were
created: a suite of tools specifically for creating PL tools.

In this dissertation, you can find several improvements I made to a particular
language workbench. I have—in multiple ways—sped up the language devel-
opment cycle in this workbench: in terms of improved development, feedback,
and execution speed.

Throughout my research, I have worked on and in the Spoofax language
workbench, a research language workbench used for programming language
research at TU Delft. Spoofax splits up the specification of programming
languages into different domains, and captures each of those domains in a meta-
language. For example, to describe the structure of the text of a programming
language, Spoofax uses a formalism based on context-free grammars, extended
with different useful features, which is called the Syntax Definition Formalism
3 or SDF3 for short. Similarly, there are meta-languages for the description
of names, references and types; for what it means to execute a program;
for defining assumptions and behaviour by example for testing purposes;
and for transforming programs, which is a catch-all, but still a fairly high-
level language. This language for transforming programs, called Stratego, is
particularly relevant to this dissertation.

Contributions. Firstly, we introduce a new meta-language specialised in control-
and data-flow analysis: FlowSpec. FlowSpec improves the development speed
of programming languages in Spoofax, and the feedback in Spoofax and in the
PL tools generated by Spoofax.



Secondly, we improve the compilation speed of Stratego on successive
compilations with an incremental compiler. This compiler improves the speed
at which you receive feedback inside Spoofax on changes to a Stratego program,
and the speed at which you can see the results of tests and other short program
executions after a change.

Thirdly, we add a gradual type system to Stratego to improve the feedback
that can be given without executing Stratego programs. A gradual type system
does not require a user of Stratego to add types to their program, but if they
choose to, the gradual type system will be able to reason about the parts of the
program that are typed, and give certain errors at compilation time instead of
run time.

Finally, we develop a pattern matching optimisation that work for Stratego’s
pattern matching. This improves the execution speed of Stratego programs.
Since all PL tools created in Spoofax include at least some of those Stratego
programs, this also speeds up the execution of the Spoofax meta-languages
themselves.
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Nederlandse Samenvatting

Computers voeren software uit om de taken uit te voeren die we van hen
verwachten. Deze software is geschreven door mensen, we noemen dit pro-
grammeren. De meest gebruikelijke manier om te programmeren is door
tekst in een programmeertaal te schrijven. Een programmeertaal is erg ge-
structureerd, zodat we exact kunnen zijn, maar uiteindelijk zijn dit nog steeds
talen voor mensen om te lezen en schrijven. Om het geschreven programma
uit te voeren, moeten we het vertalen naar een lijst met kleine instructiestap-
pen die de hardware van de computer kan uitvoeren. Ook deze vertaling is
softwarematig geautomatiseerd. De meest voorkomende vormen van deze
software zijn (1) interpreters die een programma uitvoeren terwijl ze het lezen,
of (2) compilers die het hele programma vertalen voor uitvoering op een later
moment.

Interpreters en compilers zijn gereedschap, tools, uit het domein van pro-
grammeertalen (PL). Naast interpreters en compilers is er meer ondersteunende
software beschikbaar rond programmeertalen. Zo zijn er slimme tekstverwer-
kingsprogramma’s, programma-analyse tools, waarnemers voor draaiende
programma’s, enz. De eisen aan PL-tools zijn hoog: ze mogen niet in de
weg zitten bij het maken van software. Daarom moeten ze handige functies
ondersteunen, snel genoeg zijn in interactie en geen fouten maken.

Gegeven deze vereisten is het geen eenvoudige taak om PL-tools te maken.
In een poging om het maken van PL-tools gemakkelijker te maken, zijn taal-
ontwikkelomgevingen gemaakt: een softwarepakket specifiek voor het maken
van PL-tools.

In dit proefschrift vind je verschillende verbeteringen die ik heb ontwik-
keld voor een specifieke taalontwikkelomgeving. Ik heb op meerdere ma-
nieren de taalontwikkelingscyclus in deze ontwikkelomgeving versneld: zowel
ontwikkelings-, feedback- als uitvoeringssnelheid.

Tijdens mijn onderzoek heb ik gewerkt aan en in de taalontwikkelomgeving
Spoofax, een onderzoeks-taalontwikkelomgeving die wordt gebruikt voor
programmeertalenonderzoek aan de TU Delft. Spoofax splitst de specificatie
van programmeertalen op in verschillende domeinen en vangt elk van die
domeinen in een meta-taal. Om bijvoorbeeld de structuur van de tekst van een
programmeertaal te beschrijven, gebruikt Spoofax een formalisme gebaseerd
op contextvrije grammatica’s, uitgebreid met verschillende handige functies,
en dit wordt de Syntax Definition Formalism 3 of kortweg SDF3 genoemd. Zo
zijn er meer meta-talen: voor de beschrijving van namen, referenties en typen;
voor wat het betekent om een programma uit te voeren; voor het definiëren
van aannames en gedrag via voorbeelden, voor test-doeleinden; en voor het
transformeren van programma’s, wat een grote laatste stap is, maar nog steeds
in een taal van redelijk hoog niveau wordt gevangen. Met name deze taal voor



het transformeren van programma’s, genaamd Stratego, is relevant voor dit
proefschrift.

Bijdragen. Ten eerste introduceren we een nieuwe meta-taal die gespecia-
liseerd is in besturings- en gegevensstroom analyse: FlowSpec. FlowSpec
verbetert de ontwikkelingssnelheid van programmeertalen in Spoofax en de
feedback in Spoofax en in de PL-tools die door Spoofax worden gegenereerd.

Ten tweede verbeteren we de compilatiesnelheid van Stratego voor regel-
matig achtereenvolgende compilatie met een incrementele compiler. Deze
compiler verbetert de snelheid waarmee je binnen Spoofax feedback krijgt over
wijzigingen aan een Stratego-programma, en de snelheid waarmee je na een
wijziging de resultaten van tests en andere korte programma’s kunt zien.

Ten derde voegen we een geleidelijk typesysteem aan Stratego toe om de
feedback te verbeteren die kan worden gegeven zonder Stratego-programma’s
uit te voeren. Een geleidelijk typesysteem vereist niet dat een gebruiker van
Stratego types aan zijn hele programma toevoegt, maar als diegene ervoor kiest
om enkele types toe te voegen, kan het geleidelijke typesysteem redeneren
over de delen van het programma dat types heeft, en een bepaalde fouten
detecteren tijdens het compileren in plaats van tijdens het uitvoeren.

Ten slotte ontwikkelen we een optimalisatie voor patroonvergelijking die
compatibel is met Stratego’s patroonvergelijking. Dit verbetert de uitvoe-
ringssnelheid van Stratego-programma’s. Gezien alle PL-tools die in Spoofax
zijn gemaakt in ieder geval voor een deel bestaan uit Stratego-programma’s,
versnelt dit ook de uitvoering van de meta-talen van Spoofax zelf.
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Chapter 1

Introduction

Computers of all kinds execute software to function. These computers can
be desktop and laptop computers, but also mobile phones (smart or not),
graphing calculators, (smart) appliances, and so on. The hardware has general
and specific (computation) abilities, and connects different parts, but it is the
software that controls it all. That software is written by human beings, in an
effort called programming.

Programming can be done in different ways, but one of the most prevalent
ways is still to write text in a programming language (Bissyandé et al. 2013).
Such programming languages are very structured but ultimately still languages
for humans to read and write (Fowler 1999, p. 15). In order to execute the
program written in a programming language we need a way to translate it to
tiny instruction steps that the hardware is capable of executing. This translation
step is something we automate with another program. Translation programs
are typically either interpreters—these take in program text, translate as they
read and immediately execute it—or compilers, which take in program text
and translate it into an executable program which can be run later.

These interpreters and compilers are tools of the domain of Programming
Languages (PL). Other such tools include smart program text editors (‘ed-
itors’), program (text) analysis and manipulation tools (‘refactoring tools’),
live program observers (‘debuggers’), and Integrated Development Environ-
ments (IDEs) that combine all of the above. Since PL tools are software itself,
we can use them to develop even better PL tools. But the requirements for
useful tooling are high: PL tools should not be in the way of making the actual
software. They could be in the way if they do not support the right features,
are too slow in interaction, or if they make mistakes (J. Nielsen 1993, ch. 5;
Yang et al. 2011).

And so, making new PL tools is not a simple task. Therefore there have been
efforts for a long time already to make creating PL tools easier (Schorre 1964).
Language Workbenches (LWBs) are suites of tools specifically designed for
making PL tools (Fowler 2005). This dissertation is about the various improvements
made to a particular language workbench, and how the ideas behind those improvements
may be applied elsewhere as well. Before discussing the contributions of this
dissertation, we will first take a closer look at LWBs, and their limitations.

1.1 Language Workbenches

To understand language workbenches, we must first look at programming
languages a little more closely. There are roughly two important groups of
programming languages: General-Purpose Languages (GPLs) and Domain-
Specific Languages (DSLs).



General Purpose Languages. As the name suggests GPLs are for a wide public
of programmers to use for any purpose. Learning a GPL pays off because
it is widely usable. These languages are generally popular, and the popular
ones have a network effect. Because many people know a particular GPL,
companies can more easily adopt it, as there are enough people to hire to work
on software written in the language. And the developers of a popular GPL are
also likely to be funded to further develop the language, ecosystem of tools,
and reusable code collections (libraries). The large group of users are likely
to contribute (to) libraries, some of the tooling, and at least discussions if not
implementations of new language features (Kogut and Metiu 2001).

A number of popular GPLs typically dominate particular markets (Bissyandé
et al. 2013; EDC 2022). The network effect that makes them useful, also makes
them hard to supplant. Even if the GPL itself has some poorly designed
features, popularising an improved GPL can be difficult due to the lack of tools,
libraries and network of users. There is also a trade-off between improving on
the old ideas of current GPLs and the cost that brings to learn a new language.
If a new GPL is too different from current ideas, that makes it harder to attract
users to get the network effect, which is necessary to make the language
truly successful. If a new GPL is too familiar, it might not be enough of an
improvement for people to make the switch from an existing popular GPL.

Domain Specific Languages. The DSL is a different type of programming lan-
guage. It is designed specifically for software within a certain domain. That
domain’s terminology and knowledge is (at least partially) integrated into the
language (van Deursen, Klint and J. Visser 2000; Fowler 2010). This makes
each DSL for a different domain very different and perhaps harder to learn for
anyone unfamiliar with the domain in question. Because a DSL typically serves
a smaller market than GPLs do, there is a smaller group of programmers that
use the language, which lessens the network effect.

Thankfully, there is less of a dependence on reusable code libraries in
DSLs. This is because the integration of domain terms and knowledge into
the language is doing much of the heavy lifting. Viewed from a different
perspective though, that means that the language designers and implementors
need to actually provide that powerful functionality. Next to that extra work,
programmers are spoiled by the mature tooling of GPLs and want this for a
DSL too.

Language Workbenches. And so we come upon LWBs again. We have now
seen that to create a new GPL that can compete with existing ones, we need
to provide the right mix of old and new features, which may require some
experimentation. Making that experimentation cheap is important to explore a
feature space. Similarly, a DSL designer will need to experiment with how to
integrate the domain knowledge and concepts into the language. We have also
seen that for both GPLs and DSLs it is important to provide the tooling that
programmers have gotten used from existing languages.

As it turns out, the implementation of programming languages and their
tools for both GPLs and DSLs are based on common techniques. These are
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x Figure 1.1 The Language Development Cycle(s).

captured in LWBs to make the creation and exploration of programming
languages and their tools easier. This makes it possible to explore different
ideas and their interaction within a programming language.

There are three common approaches to LWBs. The first is to use feature mod-
elling from the object-oriented programming world to create a rich semantic
model of the programming language. This is approach is used by Jetbrains
MPS (Pech 2021), MontiCore (Grönniger et al. 2008), and Gemoc (Combemale,
Barais and Wortmann 2017). The second is a more operational approach,
where a LWB uses a single powerful meta-language to express the program-
ming language implementation. This is used by the Rascal Meta-Programming
Language (Klint, van der Storm and Vinju 2009), and by reference attribute
grammar systems like JastAdd (Ekman and Görel Hedin 2007a) and Silver (Van
Wyk et al. 2010). Finally, the third approach is to split up a programming
language specification into different domains and capture each with a meta-
DSL. This is the approach of the ASF+SDF Meta-Environment (van den Brand,
van Deursen et al. 2001) and the Spoofax Language Workbench (Kats and
E. Visser 2010).

To summarise what LWBs do, Figure 1.1 depicts the Language Development
Cycle(s). These are the feedback cycles during language development. When
we move from a language development idea to a specification of the language,
we write a human-readable definition of the language at a high level of abstrac-
tion. This allows us to reflect on the idea to see if it fits into the overall design.
The next step is to implement this specification and see if the operational
details are achievable. Finally once this implementation exists and can be
executed, we can see if the execution is efficient enough. In each step, the
feedback cycle informs either the previous step, or even further back, depend-
ing on how fundamental the problem is. LWBs provide facilities to create the
implementation, or even a combination of specification and implementation.
These facilities are there to make (specification and) implementation easier to
express and provide feedback during the development.

1.2 Limitations of Language Workbenches

While LWBs are great in theory for the exploration of programming language
designs and the creation of PL tools, in practice there are some problems. It
may still be very hard to implement particular design ideas, and the resulting
PL tools may be too slow to be useful.
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Therefore, my main research question is:

How can the Language Development Cycle be sped up?

There are three aspects to this ‘speed’ that we will consider in this dissertation:
1. The development speed with which we can go from a PL idea to an executable

specification of that idea. This is influenced by the expressiveness and level
of abstraction that the LWB provides.

2. The feedback we receive from the language workbench on our specifications.
Fast and good quality feedback speeds up the process of specifying and
implementing a PL idea.

3. The execution speed that our resulting PL tools run at. In the end, for
a derived PL tool to be useful, it must be sufficiently responsive to user
interaction.

1.3 Research Methods

To answer the research question, taking all three aspects of speed into account,
we take an approach sometimes called programming systems research (E.
Visser 2021). This form of research emphasises the development of research
software to the point of practically usable tools, because that is the true test for
the underlying ideas. To put it more concretely: developing research software
allows us to test if our methods indeed speed up the language development
cycle.

One of the ways we test our methods is by applying them to case stud-
ies (Runeson and Höst 2009; Flyvbjerg 2006). For example, in Chapter 2 we
evaluate our new specification language through case studies on two real
programming languages, an academic one we use ourselves and an industrial
DSL. Another form of evaluation that we do is to benchmark our prototypes.
For example, the controlled experiments that benchmark our prototype in
Chapter 2 are described in Sections 2.6.11 and 2.7.4.

In fact, each of the chapters has a prototype implementation that we use
for evaluation. To facilitate replication studies of all our experimental results
during the PhD we have published artefacts with every publication that had
an evaluation based on experiments. When artefact evaluation was available
we submitted these artefacts for review. All reviewed artefacts were deemed
functional according to the standards (ACM 2020) set out by the Association
for Computing Machinery (ACM).

1.4 Research Context: Spoofax and Stratego

The programming systems research that we present in this dissertation is done
within the context of the Spoofax Language Workbench. We contribute ideas
for language design and implementation, instigated by, motivated by, and
tested in Spoofax. Spoofax is one of the LWBs we mentioned earlier, which
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A Language Designer's Workbench!
A One-Stop-Shop for Implementation and Verification of Language Designs

Verification (Coq)!
!

Verify the correctness of the definitions!
with a !

model and proofs of type safety in Coq!
!
The generated model includes: 

• Term definition with a well-formedness predicate  
• A lookup relation to represent name resolution 
• An inductive typing predicate 
• An inductive environment-based semantics relation.

Automatic generation of new languages machinery from simple declarative rules

Theorem type_preservation : !
  forall e v ty, !
!  ws_term ExpS ExpS ⇒!
!  sound e ⇒ !
!  eval e v ⇒ !
!  wtyped e ty ⇒ !
!  val_type v ty

Development (Eclipse)!
!

Easily write and edit programs!
with an !

Eclipse plugin for interactive development!
!
Spoofax extends Eclipse to connect syntactic and 
semantics editor services. These services give feedback 
as the programmer types; they include: 
• syntactic highlighting  
• code views 
• program navigation through references 
• semantic code completion 
• error detection (unresolved variables, type errors…)

Execution (Java)!
!

Efficiently execute programs!
with a !

Java-based abstract syntax tree interpreter!
!
Implicit structural operational semantics rules from 
DynSem are transformed into constructor specific rules:  
  Ifz(e1, e2, e3) --> v	
  where e1 --> I(i),	
     [i = 0, e2 --> v] + [i≠0, e3 --> v]	
The evaluation methods directly derive from such rules.

public class Ifz_3_Node 	
	 extends AbstractNode implements I_Exp	
  public I_Exp _1, _2, _3;	
  public Value evaluate	
           (I_InterpreterFrame frame){	
    I_InterpreterFrame env = frame;	
    I_Exp e1 = this._1;	
    I_Exp e2 = this._2;	
    I_Exp e3 = this._3;	
    Value v1 = e1.evaluate(env);	
    if (v1 instanceof I_1_Node) {	
      I_1_Node c_0 = (I_1_Node) v1;	
      int i = c_0._1;	
      if (i != 0) {	
        return e3.evaluate(env);	
      } else {	
        if (i == 0) {	
          return e2.evaluate(env);	
        } else {	
          throw 	
	 	 	 	 	 new 	
	           InterpreterException(	
	 	 	 	 	     “Premise failed”);

Inductive C := (∗ constructors ∗)  
| ParamC | FunC | FixC | AppC | IfzC …!

Inductive term : Type :=  
| Co : C # list term # term  
| Id : I # term (∗ I is identifier type ∗)!

Inductive ws_term : sort # term # Prop :=  
| Co_ws cn s ss ts :  
! sig cn = (ss,s) # (∗ sig is signature ∗)  
  Forall2 ws_term ss ts #  
! ws_term s (Co cn ts)…!

Inductive wtyped : term # term # Prop := …!

Inductive eval : env # term # val # Prop:=

Syntax!
with SDF3!

!
• The syntax of a language defines the 

structure of the text representation of 
valid programs. 

• A parsing algorithm that generates 
the abstract syntax tree from the text 
source code is usually the only 
definition of the syntax rules. 

• SDF3 uses both templates, to define 
context free grammar productions 
including layout for pretty printing, and 
declarative rules for disambiguation.

Name Binding!
with NaBL!

!
• The name binding rules of a language 

describes how identifiers refer to their 
definition.  

• A resolution algorithm is usually 
implicit and only appears inside the 
compiler or the type checker. 

• NaBL uses rules relying on the 
following basic language independent 
concepts to identify definitions, 
references, and scopes to restrict the 
visibility of definitions.

Type System!
with TS!

!
• The type system assign types to the 

different elements of a programs and 
describes how these elements can be 
connected safely. 

• A derived type checking/inference 
algorithm can be used in the IDE and 
the compiler to verify the static 
correctness of a program.  

• TS inductive rules define the type 
system; these rules can refer to the 
type of the definitions from NaBL.

Dynamic Semantics!
with DynSem!

!
• The dynamic semantics of a language 

describe the dynamic behavior of the 
programs on a concrete machine.  

• Often the compiler or interpreter 
implementation stands as the only 
definition of the dynamic semantics. 

• In DynSem, the semantics are defined 
by declarative rules based on the 
framework of implicitly-modular 
structural operational semantics 
developed by P. Mosses.
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x Figure 1.2 Part of a Spoofax poster accompanying a vision paper (E. Visser,
Wachsmuth et al. 2014), and the SDF example zoomed-in.

takes the approach to split up a programming language specification into
different domains, and capture each with a meta-DSL. Our research software
includes a new meta-DSL called FlowSpec, and improvements to an existing
meta-DSL called Stratego.

1.4.1 The Spoofax Language Workbench

Spoofax is a language workbench that takes the approach of splitting up a
programming language specification into different domains, and capture each
of those domains with a meta-DSL. The Spoofax project is an active research
project, that is steadily improving over the years. We’ll have a look at Spoofax
as I got to know it at the time, illustrated by Figure 1.2. When I started on my
PhD programme in 2016, the Spoofax language workbench had components in
the following five domains.

Grammars describe the textual representation of a programming language. The
Syntax Definition Formalism (SDF) captures the domain of grammars. The
parser generated from an SDF specification can turn text that matches the
grammar into an Abstract Syntax Tree (AST). The labels on the grammar rules
form the labels of the tree, and each node in the tree has the corresponding
grammar sort as its type. These ASTs are the program representation for other
components in the workbench.

SDF3 was the version under active development. For example, de Souza
Amorim, Erdweg et al. (2016) added (syntactic) code completion, derived from
the specification by writing the grammar as a template. These templates can
be seen on the right in Figure 1.2, where an expression grammar is defined.
Each grammar rule for expression Exp is followed by a dot and a label. On
the right-hand side of the equals sign is the template with program text, and
bracketed sorts interspersed, which together describes the tree shape of the
program text.
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Static Semantics is the meaning of a program without executing it. The Name
Binding Language (NaBL) captures name rules (definition and resolution of
names), while the Type System Language (TS) captures simple type systems.
These languages refer to each other’s concepts and were a pair. Together, they
capture part of the domain of static semantics.

This is illustrated by the poster in Figure 1.3 in the left two examples. The
left of the two examples describes where variables are defined, where they are
referenced, and what their lexical scope is. It also speak of types where they
are present in the program. Each of these rules matches on an AST node with
a label from the grammar. The type rules of TS on the right also match on AST
nodes, compute types for those nodes, and refer to types of the definition of
variables.

At the time, NaBL2 was under active development, based on the—at the
time—new idea of scope graphs (Néron et al. 2015). Scope graphs can express
more complex name and type patterns that were not expressible in NaBL and
TS.

Notably, while Spoofax has captured name and type analysis in meta-DSLs,
control- and data-flow analysis is not part of that. Control flow relates to the
order in which parts of a program are executed. Programs test data according
to certain conditions to decide what to do next. A common form of this is
the if-then-else, which checks if a certain condition holds and in that case
executes the then code, while instead executing the else code if the condition
does not.

Data flow analysis builds on top of control flow analysis to predict the
approximate values the program will compute, or the approximate behaviours
of the program, when it is executed. This is used to provide static guarantees,
such as identifying and disallowing code that will never be executed; and
to provide insights that can be used to optimise a program, such as moving
some code to a location where it is executed less if the result is predicted to
commonly give the same result.

Dynamic Semantics is the meaning of a program when executed. The DynSem
language captures part of the dynamic semantics domain. DynSem specific-
ations use rules to do computation steps on programs, partially inspired by
Modular Structural Operational Semantics (Mosses 2004). From these DynSem
specifications interpreters can be generated (Vergu, Néron and E. Visser 2015).
With dynamic semantics specified, we can also compare that it agrees with
the static semantics of the same programming language. This is typically
done by writing a mathematical proof that relates the two. In mathematical
proofs, details matter, and in some cases we may want a small-step semantics,
which refines programs in small steps towards values. While this is possible in
DynSem, there is a preference for big-step semantics which computes values
directly from programs (Vergu, Néron and E. Visser 2015, p. 366). This makes
it easier to generate interpreters with reasonable performance, as opposed to
small-step semantics, which needs optimisations (such as refocussing (Danvy
and L. R. Nielsen 2004)).

The right-most example of Figure 1.3 shows some DynSem rules. The E env
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Onward! Paper:

A Language Designer's Workbench!
A One-Stop-Shop for Implementation and Verification of Language Designs

Verification (Coq)!
!

Verify the correctness of the definitions!
with a !

model and proofs of type safety in Coq!
!
The generated model includes: 

• Term definition with a well-formedness predicate  
• A lookup relation to represent name resolution 
• An inductive typing predicate 
• An inductive environment-based semantics relation.

Automatic generation of new languages machinery from simple declarative rules

Theorem type_preservation : !
  forall e v ty, !
!  ws_term ExpS ExpS ⇒!
!  sound e ⇒ !
!  eval e v ⇒ !
!  wtyped e ty ⇒ !
!  val_type v ty

Development (Eclipse)!
!

Easily write and edit programs!
with an !

Eclipse plugin for interactive development!
!
Spoofax extends Eclipse to connect syntactic and 
semantics editor services. These services give feedback 
as the programmer types; they include: 
• syntactic highlighting  
• code views 
• program navigation through references 
• semantic code completion 
• error detection (unresolved variables, type errors…)

Execution (Java)!
!

Efficiently execute programs!
with a !

Java-based abstract syntax tree interpreter!
!
Implicit structural operational semantics rules from 
DynSem are transformed into constructor specific rules:  
  Ifz(e1, e2, e3) --> v	
  where e1 --> I(i),	
     [i = 0, e2 --> v] + [i≠0, e3 --> v]	
The evaluation methods directly derive from such rules.

public class Ifz_3_Node 	
	 extends AbstractNode implements I_Exp	
  public I_Exp _1, _2, _3;	
  public Value evaluate	
           (I_InterpreterFrame frame){	
    I_InterpreterFrame env = frame;	
    I_Exp e1 = this._1;	
    I_Exp e2 = this._2;	
    I_Exp e3 = this._3;	
    Value v1 = e1.evaluate(env);	
    if (v1 instanceof I_1_Node) {	
      I_1_Node c_0 = (I_1_Node) v1;	
      int i = c_0._1;	
      if (i != 0) {	
        return e3.evaluate(env);	
      } else {	
        if (i == 0) {	
          return e2.evaluate(env);	
        } else {	
          throw 	
	 	 	 	 	 new 	
	           InterpreterException(	
	 	 	 	 	     “Premise failed”);

Inductive C := (∗ constructors ∗)  
| ParamC | FunC | FixC | AppC | IfzC …!

Inductive term : Type :=  
| Co : C # list term # term  
| Id : I # term (∗ I is identifier type ∗)!

Inductive ws_term : sort # term # Prop :=  
| Co_ws cn s ss ts :  
! sig cn = (ss,s) # (∗ sig is signature ∗)  
  Forall2 ws_term ss ts #  
! ws_term s (Co cn ts)…!

Inductive wtyped : term # term # Prop := …!

Inductive eval : env # term # val # Prop:=

Syntax!
with SDF3!

!
• The syntax of a language defines the 

structure of the text representation of 
valid programs. 

• A parsing algorithm that generates 
the abstract syntax tree from the text 
source code is usually the only 
definition of the syntax rules. 

• SDF3 uses both templates, to define 
context free grammar productions 
including layout for pretty printing, and 
declarative rules for disambiguation.

Name Binding!
with NaBL!

!
• The name binding rules of a language 

describes how identifiers refer to their 
definition.  

• A resolution algorithm is usually 
implicit and only appears inside the 
compiler or the type checker. 

• NaBL uses rules relying on the 
following basic language independent 
concepts to identify definitions, 
references, and scopes to restrict the 
visibility of definitions.

Type System!
with TS!

!
• The type system assign types to the 

different elements of a programs and 
describes how these elements can be 
connected safely. 

• A derived type checking/inference 
algorithm can be used in the IDE and 
the compiler to verify the static 
correctness of a program.  

• TS inductive rules define the type 
system; these rules can refer to the 
type of the definitions from NaBL.

Dynamic Semantics!
with DynSem!

!
• The dynamic semantics of a language 

describe the dynamic behavior of the 
programs on a concrete machine.  

• Often the compiler or interpreter 
implementation stands as the only 
definition of the dynamic semantics. 

• In DynSem, the semantics are defined 
by declarative rules based on the 
framework of implicitly-modular 
structural operational semantics 
developed by P. Mosses.

Eelco Visser1, Guido Wachsmuth1, Andrew Tolmach2, Pierre Neron1, Vlad Vergu1, Augusto Passalaqua1, Gabriël Konat1  !

              1                                                                                                             2                                                                                       

x Figure 1.3 The NaBL, TS and Dynsem examples from the poster.

environment maps names to values, much like how in static semantics a name
is mapped to a type. Pieces of a program are matched as AST nodes again,
with long arrows that show the step to values.

Rewriting is a general technique used in PL tools. The Stratego term rewriting
language (Hemel, Kats et al. 2010; Olmos and E. Visser 2005), is not specific
to the definition of static or dynamic semantics rules. The rewrite rules of
Stratego still match on AST nodes, and turn them into other AST nodes. This
can be used for many things, like desugaring (simplifying the AST to make
it easier to work with), name resolution (static semantics), code generation
(an indirect form of dynamic semantics), including optimisation, and more. A
special feature of Stratego called dynamic rewrite rules (Bravenboer, van Dam
et al. 2006) was developed that could do a form of control- and data-flow
analysis, although it is not used very often for this purpose. At the time,
Stratego was not under active development; it was the mature glue language
of Spoofax as well as the escape hatch for things that a meta-DSL could not
express.

Testing checks assumptions, finds mistakes, and documents behaviour. Testing—of
parsing, static semantics such as name resolution and types, and execution of
Stratego rewrite rules—was done in the Spoofax Testing Language (SPT) (Kats,
Vermaas and E. Visser 2011). Any serious (software) project, including PL tools
defined in Spoofax, benefit from tests. SPT provides some convenient ways to
test PL specific tasks that are extracted from a specification in Spoofax. For
example, we can write a small program in the language we defined, marking a
name at definition and reference site, and tell SPT to test that the name resolves
from the reference to the definition.

During my PhD, NaBL version 2 was developed further, and then replaced
by Statix. DynSem’s successor—Dynamix—was also proposed during this
time, and is still under development.

1.4.2 The Stratego Term Rewriting Language

Stratego is a term rewriting language that supports program transformation
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with programmable rewriting strategies (E. Visser, Benaissa and Tolmach 1998).
The shapes of terms are described by algebraic signatures, which are similar to
algebraic data types in Functional Programming (FP), or regular tree grammars.
In fact, most of the signatures we use in Stratego are generated from an SDF
specification. Stratego, within Spoofax, mostly rewrites terms that represent
the AST defined in SDF.

Rules. Rewriting is done through rewrite rules, which match an AST pattern
and produce an AST pattern. This is illustrated in Figure 1.4, with cnf-rule. In
Stratego, we do not have to explicitly call rewrite rules on the children of the
AST node we matched on though, like we might in functional programming.
In term rewriting, we instead use a rewrite strategy to apply the rewrite rules
everywhere in the tree. For example, we can apply rules top-down, bottom-up,
repeat them until there is nothing left to rewrite, etc. In the example, innermost
applies the rewrite rules bottom-up, repeating them exhaustively.

Strategies. Because Stratego has programmable strategies, we can choose
when, where and what strategy to use. We can also write our own strategies,
either by referring to other strategies (e.g. innermost), or by using primitives for
generic traversal (e.g. in bottomup, where all is a primitive). These are named
traversals because we specify how to traverse the tree, and generic because
we do not necessarily care about the labels on the tree nodes (that is what
the rewrite rules are for). The downside of these powerful generic traversal
primitives is that they cannot easily be checked by a static type system. The
initial solution for Stratego was to use a minimal dynamic type system, without
checks at run-time.

Modules. Rewrite rules with the same name can be written across different
files free-form, however the user wants, and are merged together by the
compiler automatically. In order to provide such a flexible module system,
Stratego’s has a so-called whole-program compiler. The compiler resolves all
imports to other files itself, finds the entire program, and compiles it all at
once. In contrast, some compilers will compile each file separately, perhaps
needing some limited information from other files, or postponing cross-file
checking to a separate tool. While the whole-program compiler is convenient
in use, the cost is that as Stratego programs grow larger, the compiler takes
longer.

1.5 Contributions

Within the context of Spoofax in general, and Stratego in particular, we present
our contributions.

1.5.1 A Meta-DSL for Control- and Data-flow Analysis

▷ To improve the development speed in Spoofax, and the feedback in Spoofax
and PL tools developed in Spoofax, we introduce a new meta-DSL, which
is specialised towards control- and data-flow analysis: FlowSpec. This DSL
fills a gap in Spoofax, as this kind of static analysis that was not commonly
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rules
cnf-rule: Or(And(a1, a2), o) -> And(Or(a1, o), Or(a2, o))
cnf-rule: Or(o, And(a1, a2)) -> And(Or(o, a1), Or(o, a2))

strategies
cnf = innermost(cnf-rule)
innermost(s) = bottomup(try(s; innermost(s)))
bottomup(s) = all(bottomup(s)); s

x Figure 1.4 Conjunctive normal form through rewriting in Stratego.

implemented. ◁
FlowSpec captures the domain of control- and data-flow analysis through

explicit use of domain terms from control-flow graphs and data-flow equations.
The control-flow graph rules are syntax directed and composed by referring to
the surrounding control-flow graph. The data-flow equations match on an edge
of the control-flow graph and propagate data-flow information from one node
to the other. The final piece of the puzzle is that a data-flow analysis is not only
typed, but has an associated lattice instance, which provides the operation to
use where control-flow merges, and provides a termination guarantee for the
analysis.

FlowSpec has been evaluated with case studies of common analyses written
for Stratego, and for GreenMarl, an industrial DSL for graph analytics (Hong,
Chafi et al. 2012). Each of these case studies includes a performance measure-
ment with benchmarks.

In summary, FlowSpec fills the gap of control- and data-flow analysis in
Spoofax, by providing a high-level, declarative DSL for specification of those
analyses.

1.5.2 An Incremental Compiler Through an Internal Build System

▷ To improve the feedback in Spoofax, we improve the compilation speed of
Stratego with an incremental compiler. ◁

New meta-DSLs in Spoofax usually (partially) compile to Stratego. This res-
ults in a larger amount of Stratego code to compile, even as less Stratego code is
actually written. Since Stratego has a relatively slow whole-program compiler,
Spoofax language projects are getting slower to build as a consequence of the
nice abstractions that the new meta-DSLs introduce.

If only Stratego could be incrementally compiled. Or even just separately
compiled, so an old-fashioned build system could cache that for increment-
ality. But Stratego has language features that make it impossible to compile
separately while staying compatible with the existing runtime.

Therefore our solution is to turn things around. We cannot put a separate
compiler in an incremental build system. Therefore, we put the incremental
build system inside the compiler. For the build system we use Pipelines for
Interactive Environments (PIE), an incremental build system with support
for dynamic dependencies (Konat, Erdweg and E. Visser 2018). We can find
and track the complex dependencies between different pieces of Stratego
code in PIE by pulling the Stratego compiler apart into smaller components,
identifying pertinent information, and passing this to PIE. This results in
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an incremental compiler for Stratego that is now available in Spoofax. It is
backward compatible with the existing runtime system and with code compiled
with the whole-program compiler.

We evaluate our incremental compiler by replaying the recorded version
control history of a large Stratego codebase: WebDSL (Groenewegen, Hemel
et al. 2008). This shows that the majority of the last 200 commits take under
10 seconds to compile incrementally, whereas the entire project takes over 90

seconds to compile with the original whole-program compiler.
In summary, we present an incremental compiler for Stratego that remains

backward compatible with the existing runtime system and other compiled
Stratego code, by putting an incremental build system inside the compiler.

1.5.3 A Gradual Type System for an Existing Language With Generic Traversals

▷ To improve the feedback on Stratego programs in Spoofax, we add a gradual
type system to Stratego. ◁

Stratego has always featured signatures that describe the shape of the trees it
works on. These certainly look like types, but Stratego actually did very little
enforcement of these types in Stratego code. This lack of enforcement could be
leveraged to work with ill-formed trees sometimes, without having to specify
their type. But quite commonly, the ill-formed trees are an accident, a type
bug in the Stratego program.

Adding static types to Stratego would solve this problem, but there are
two major roadblocks. The first is that Stratego is built on generic traversal
primitives that elude static typing in their general form. The second is that
there is a large codebase of useful Stratego code that makes excellent use of
all the dynamically typed freedom that Stratego offers. We have yet to find a
static type system that would support generic traversals and provide a cheap
enough migration path for existing code.

But we do not have to find such a static type system. Gradual type systems
allow the mixing of dynamically typed code and statically typed code (Siek
and Taha 2006). A gradual type system gives us the migration path we need
for existing code, and a way out of defining types for all of Stratego. And
so, we present a gradual type system for Stratego. In our design, we take the
new incremental compiler for Stratego into account, and minimise the extra
information that it has to track. We also find that we can incorporate existing
research on typed generic traversals in our type system. With a gradual type
system, we can already express queries and collecting traversals (type-unifying).
By adding a special type-preserving type, we can also write generic traversals
with the same input and output type, that can use an overloaded rewrite rule.

To evaluate the gradual type system for the purpose of migrating existing
code, we tested adding types to an existing Stratego codebase of 36 files
containing 3235 lines of code. During this evaluation we added 74 type
signatures to standard library strategies that are used in the code and 117

type annotations to the code of the project. The majority (85 out of 117) type
annotations are a fully static type. Numerous type-related bugs were found,
which we roughly classify and present examples of. This small study shows
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that the gradual type system is useful to guide the transition of code to a better
type discipline.

In summary, we present a gradual type system to add statically checkable
type discipline to Stratego. The type system can give types to many common
patterns in Stratego code, and supports dynamically typed code, to keep
existing code working.

1.5.4 Mapping Pattern Match Optimisations to a Core Language for Rewriting

▷ To improve the execution speed of PL tools produced by Spoofax, we add
an optimisation for pattern matching in Stratego. Because Spoofax is itself
defined in Spoofax, this also increases the speed at which Spoofax runs, and
thus improves feedback. ◁

With the addition of an incremental compiler and gradual type system,
Stratego is now a much nicer language to use. However, these are only
improvements to the development cycle in Stratego. The execution of compiled
Stratego code can still be improved.

In some ways, term rewriting resembles FP, so we were inspired to bring an
optimisation from FP into the Stratego compiler: pattern match optimisation.
There was some suspicion already that this can improve execution speed, and
there was an old, broken attempt at pattern match optimisation in the Stratego
compiler already. But the main problem with copying this idea from FP is that
Stratego has a very different core calculus.

Pattern matching in Stratego is compiled down to so-called first-class pattern
matching primitives. These primitives are even used directly in Stratego to
great effect in certain code patterns. In the end though, these primitives still
express a pattern matching that seems similar to pattern matching in FP. So
we look for, and find a way to extract FP-like pattern matching from Stratego
programs.

We make sure that the proposed optimisation is actually effective by testing
its implementation on a corpus of Stratego programs. We test Stratego pro-
grams written in multiple styles to make these measurements representative,
and these show that the optimisation does indeed improve the execution speed
of Stratego programs, in some cases dramatically so.

In summary, by finding a way to translate Stratego’s first-class pattern
matching to an FP-like pattern matching, we were able to apply well-known
pattern matching optimisation techniques from FP to Stratego.

1.6 Structure

The main chapters of this dissertation are based on four peer-reviewed pub-
lications. I am the first author and main contributor of these publications. In
the publication for Chapter 5, the status of first author and main contributor
is shared with Toine Hartman, who executed most of the scientific investig-
ation as part of his master’s thesis project (Hartman 2022). I was the direct
supervisor of this master’s thesis project and was involved in the scoping of
the project, advising the methodology used in the project, brainstorming with

Chapter 1 U Introduction 11



Toine about details of the work, reviewing the code for the prototype, and
advising on the written thesis. The publication based on the thesis project was
written primarily by me, and I extended the evaluation.

Since each main chapter is based on a stand-alone publication with distinct
contributions, there is some redundancy, especially in the introduction sections.
This was left in so each chapter can be read independently. The main chapters
and their corresponding publication are as follows:
• Chapter 2 is an updated version of the COMLAN 2020 paper FlowSpec: A

Declarative Specification Language for Intra-Procedural Flow-Sensitive Data-Flow
Analysis (Smits, Wachsmuth and E. Visser 2020).

• Chapter 3 is an updated version of the Programming 2020 paper Constructing
Hybrid Incremental Compilers for Cross-Module Extensibility with an Internal
Build System (Smits, Konat and E. Visser 2020).

• Chapter 4 is an updated version of the SLE 2020 paper Gradually typing
strategies (Smits and E. Visser 2020).

• Chapter 5 is an updated version of the SLE 2022 paper Optimising First-Class
Pattern Matching (Smits, Hartman and Cockx 2022).

Finally, we end with a conclusion in Chapter 6 where we summarise our work,
discuss the work in relation to the main research question, and discuss future
work.

Appendix A is a supplement to Chapter 2, and Appendix B is an unpublished
supplement to Chapter 4. Both are referenced in their respective chapters where
relevant.

A note on citations. As you may have already noticed in the above citations,
sometimes the citation includes an initial of an author. This is intentional, these
are inserted automatically in cases where multiple authors with the same last
name are in the bibliography.

12 u Strategic Language Workbench Improvements



Chapter 1 U Introduction 13





Chapter 2

Language Parametric
Control- and Data-Flow Analysis

Abstract. Data-flow analysis is the static analysis of programs to estimate their ap-
proximate run-time behaviour or approximate intermediate run-time values. It is an
integral part of modern language specifications and compilers. In the specification
of static semantics of programming languages, the concept of data-flow allows the
description of well-formedness such as definite assignment of a local variable before
its first use. In the implementation of compiler back-ends, data-flow analyses inform
optimisations.

Data-flow analysis has an established theoretical foundation. What lags behind is
implementations of data-flow analysis in compilers, which are usually ad-hoc. This
makes such implementations difficult to extend and maintain. In previous work re-
searchers have proposed higher-level formalisms suitable for whole-program analysis in
a separate tool, incremental analysis within editors, or bound to a specific intermediate
representation.

In this chapter, we present FlowSpec, an executable formalism for specification of
data-flow analysis. FlowSpec is a domain-specific language that enables direct and
concise specification of data-flow analysis for programming languages, designed to
express flow-sensitive, intra-procedural analyses. We define the formal semantics of
FlowSpec in terms of monotone frameworks. We describe the design of FlowSpec using
examples of standard analyses. We also include a description of our implementation of
FlowSpec.

In a case study we evaluate FlowSpec with the static analyses for GreenMarl, a
domain-specific programming language for graph analytics.

Based on: Jeff Smits, Guido Wachsmuth and Eelco Visser (2020). ‘FlowSpec: A Declarative
Specification Language for Intra-Procedural Flow-Sensitive Data-Flow Analysis’. In: Journal of
Computer Languages 57, 100924, page 39. doi: 10.1016/j.cola.2019.100924

https://doi.org/10.1016/j.cola.2019.100924


2.1 Introduction

F. Nielson, H. R. Nielson and Hankin define program analysis as follows:
Program analysis offers static compile-time techniques for predicting safe
and computable approximations to the set of values or behaviours arising
dynamically at run-time when executing a program on a computer (F. Nielson,
H. R. Nielson and Hankin 2005, p. 1). Data-flow analysis can answer questions
such as if and when data in a variable is accessed, or if certain invariants hold
on the data. Data-flow analyses are used to provide static guarantees in the
form of compiler warnings and errors, to inform optimisations, to identify
security problems, or problematic code style.

2.1.1 Uses Of Data-flow Analysis

Data-flow analyses may be part of the static semantics of a language. For
example, in Java a final field in a class must be initialised for an object of that
class by the end of its construction (Gosling et al. 2005, ch. 16). Since constructor
code can have conditional control-flow, a data-flow analysis is necessary to
check that all possible execution paths through constructors actually assign
a value to the final field. For another example, the compiler for Rust gives
warnings on code paths that are unreachable (Rust Project Developers 2018).

Data-flow analyses are commonly used to inform optimisations in compilers.
Live variables analysis provides information on which variables will be used
with their current value, which can be used by a form of dead code elimination
called dead store elimination (Auslander and Hopkins 1982, p. 24). This optim-
isation removes assignments to variables which are not observed. Available
expressions analysis identifies expressions that have already been computed,
which can be used for common subexpression elimination.

In some compilers, and in separate tools, data-flow is used to identify
security problems. A common approach is taint analysis, which can analyse
where data from relevant sources flow. For example, a source of data could be
untrusted data from user input. User input should not be used directly in the
text of an SQL query, as this opens the possibility of SQL injections.

Data-flow analysis is also applied in code style tools that check for code
patterns which are hazards to maintenance or likely to be a logic error. Ex-
amples are analyses such as a switch case in Java which has some code, but
then falls through to the next case. Although a case that directly falls through
is likely intentional, one that has some code may be missing a break statement.
Another style lint, as these analyses are often called, is the definition of a
non-final variable that is only assigned once. Both of these lints are part of the
CheckStyle (Checkstyle team 2018) tool for Java.

2.1.2 Implementation of Data-flow Analysis

Data-flow analyses are important for the specification and implementation
of programming languages and domain-specific languages (DSLs). However,
they are expensive to implement, especially in a general purpose programming
language. The compiler for GreenMarl (Hong, Sevenich and Lugt 2014), a
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graph analytics DSL from industry, requires more than 2000 lines of C++ code
for a data-dependence analysis that takes the domain concepts of the language
into account. Since DSLs typically have a relatively small audience, this is
reflected in their development team size. The implementation cost of even the
most common data-flow analyses can become prohibitive in such a situation.

Language workbenches aim to facilitate high-level language definition and
generation of implementations, thereby improving the situation for DSL devel-
opment. For example, the Spoofax language workbench (Kats and E. Visser
2010) provides declarative meta-languages for the concise specification of a
programming language. An SDF3 (Vollebregt, Kats and E. Visser 2012) specific-
ation is used by Spoofax to generate a parser. An NaBL2 (van Antwerpen et al.
2016) specification of the static semantics of the language is used to generate a
type checker.

The goal of this work is to provide the same benefits of concise, executable
specification for data-flow analysis. In this chapter, we present FlowSpec, a
specification language for intra-procedural, flow-sensitive data-flow analysis.
FlowSpec is integrated in the Spoofax language workbench and makes use
of the provided ecosystem. The analysis that is generated from FlowSpec
consumes analysed abstract syntax trees, and turns these trees into a control-
flow graph using the control-flow rules. The control-flow graph is then used
as input for data-flow analysis, based on the data-flow rules in a FlowSpec
specification. When the data-flow analysis requires names or types, these can
be referenced directly in the specification.

We evaluate FlowSpec with specifications of analyses, and we present case
studies in static analysis definitions for GreenMarl, an industrial DSL for high
performance, concurrent graph analytics, and Stratego, a term transformation
language.

In summary, the contributions of this chapter are:

• The language design of FlowSpec, a language parametric, domain-specific
language for the definition of intra-procedural, flow-sensitive data-flow
analysis.

• The formal semantics of FlowSpec in terms of Monotone Frameworks, a
solid mathematical foundation that has been used for decades for sound
approximation of data-flow information beyond sets.

• The implementation of FlowSpec, including the integration into the Spoo-
fax language workbench, a fixed-point solving algorithm, and an adapted
Strongly Connected Component (SCC) algorithm with extra ordering guar-
antees within the SCCs. The use of SCCs and their ordering is not novel,
but we are not aware of a published algorithm that gives this directly.

• The evaluation of FlowSpec on the GreenMarl graph analytics DSL, which
shows that the language can concisely and cleanly express analyses separ-
ately from the definition of transformations.

• The evaluation of FlowSpec on the Stratego term transformation language,
which shows that the language can express interesting non-standard analyses
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on more languages than a typical imperative language.

• The performance evaluation of FlowSpec on different size Stratego strategies,
which show that the speed of FlowSpec is reasonable for use within an
optimising compiler.

The paper this chapter is based on extends the initial SLE 2017 paper on
FlowSpec (Smits and E. Visser 2017). We describe the FlowSpec design and
implementation in more depth and provide evidence of its expressiveness by
means of a significantly extended set of examples. We give a more complete
definition of the syntax and semantics of the FlowSpec core language including
its connection to name analysis using NaBL2. We describe the implementation
of FlowSpec, including an adapted SCC algorithm and worklist algorithm,
and discuss its integration in the Spoofax language workbench. We extend
the case study of the application of FlowSpec to the specification of data-
flow analyses for the Green-Marl data analytics DSL with more and more
complete specifications of analyses, demonstrating that FlowSpec can be used
to concisely define data-flow analyses that can be used to replace ad hoc
implementations of these analyses in the Green-Marl compiler. We present a
new case study, applying FlowSpec to the specification of reaching definitions
analysis for the Stratego rewriting language. We evaluate the performance of
FlowSpec analyses for GreenMarl and Stratego.

Outline. In the next section we discuss background on data-flow analyses and
monotone frameworks. In Section 2.3 we introduce FlowSpec by example. We
present the semantics of FlowSpec in Section 2.4. In Section 2.5 we describe
the implementation of FlowSpec, both its integration into Spoofax and the
independent solver algorithm. In Section 2.6 we present the first part of our
evaluation of FlowSpec through data-flow analyses specified for the GreenMarl
programming language. We present some benchmarks that show that these
analyses are practically usable. In Section 2.7 we present the second part of
our evaluation of FlowSpec through a data-flow analysis for the Stratego term
transformation language. This section includes a comparative performance
evaluation with the same data-flow analysis as currently implemented in the
Stratego compiler. In Section 2.8 we compare against related work, and we
conclude with Section 2.9.

2.2 Background: Data-flow Analysis and Monotone Frame-
works

In this section we introduce data-flow analysis in general and monotone frame-
works as a mathematical framework for sound, terminating data-flowanalysis.

2.2.1 Data-flow Analysis by Example

We start this introduction to data-flow analysis with two examples. Consider
the live variables analysis in Figure 2.1. Live variables analysis provides the
set of variable names, where the value currently bound to that variable may
be read further along in the program. The figure shows an example program,
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3
4
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x = 2;
y = 4;
x = 1;
if(y > 0) {

z = y;
} else {

z = x * y;
}
x = z;

LV◦ LV•

1 ∅ ∅
2 ∅ {y}
3 {y} {x, y}
4 {x, y} {x, y}
5 {y} {z}

6 {x, y} {z}

7 {z} ∅

1

2

3

4

5 6

7

x Figure 2.1 An illustration of live variables (LV) analysis. On the left is an
example program in the While language, with numbered program frag-
ments. On the right is the control flow graph (CFG) of the program. In
the center is the analysis result. The LV◦ and LV• are respectively before
and after the variable accesses of the CFG node.

the results of live variables analysis for each statement, both before and after
the effect of the statement, and the control-flow graph of the program. The
control-flow graph shows how the program will execute either statement 5 or
statement 6 based on whether condition 4 holds. Note how the variable x is
only read in one branch of the if statement. Before the if statement, in the
LV◦ set, x is still in the set as the analysis approximates the behaviour of both
branches.

When a variable is not in the set of live variables after the statement that
assigns a value to that variable, that means that the value assigned is not
actually read. This information can be used by an optimisation to safely
remove that assignment from the program. In the example, the assignment to
x in statement 1 is such a redundant assignment, which can be recognised by
the absence of x in the LV• set of that first statement. This is consistent with
the program, which does not read x until statement 6, and yet the variable is
unconditionally reassigned in statement 3.

For comparison, we now discuss another data-flow analysis, available expres-
sions, shown in Figure 2.2. Available expressions analysis provides the set of
expressions that have already been computed. Expressions become unavailable
again when a variable used in the expression is assigned a new value. Note
that for an expression to be available, it needs to be available in all paths. At
the start of the while loop, we can only consider expressions available when
they are available right before the loop and at the end of the body of the loop.
Therefore a*b is not available in AE◦ of condition 3, whereas a+b is.

The information from available expressions analysis can be used to remove
redundant recomputations of expressions. We can save a repeated expression
in a separate variable and use that variable instead of the expression, which
is known as common subexpression elimination. In our example this would be
expression a+b which can be replaced by x in condition 3.

In general, we note that for live variables analysis we need to know the
behaviour in the next part of the program, whereas for available expressions
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1
2
3
4
5
_

x = a + b;
y = a * b;
while(y > a+b) {

a = a + 1;
x = a + b

}

AE◦ AE•

1 ∅ {a+b}
2 {a+b} {a+b, a*b}
3 {a+b} {a+b}
4 {a+b} ∅
5 ∅ {a+b}

1

2

3

4

5

x Figure 2.2 An illustration of available expressions (AE) analysis. On the left
is an example program in the While language, with added brackets to
number program fragments. On the right is the control flow graph (CFG)
of the program. In the center is the analysis result. The open and closed
dots on the analysis abbreviation are before and after a CFG node’s effect
respectively.

we need to know the expressions computed earlier. Therefore the computation
of an analysis may need to propagate information either forward or backward.
We also need to approximate the behaviour of the program when there are
multiple paths to a program point. In live variables analysis we consider
variables read in any path, whereas in available expressions we consider
only expressions computed in all paths. It is useful to model these paths of
control-flow with a control-flow graph, to abstract from concrete language
constructs.

2.2.2 Taxonomy of Data-flow Analysis

The example analyses are both flow-sensitive analyses. These analyses take the
control-flow of the program into account, i.e. the order in which effects occur.
Flow-insensitive analysis is less accurate, but also computationally cheaper. This
can be a useful trade-off for whole-program analysis, where procedure calls
are taken into account. A refined form of flow sensitivity is the path-sensitive
data-flow analysis, which derives information from conditionals as it takes one
path or another. Information from conditionals is also used in the type systems
of some programming languages (Pearce and Noble 2011; Jetbrains 2018; Red
Hat, Inc. 2018), where the terminology is flow-sensitive types. In programming
languages these flow-sensitive types are primarily used for conveniences such
as tracking null-safety of pointer types, as well as more general structural
sub-typing support.

The data-flow analyses we just presented are intra-procedural, i.e. they only
consider code within procedures, and not procedure calls. By contrast, inter-
procedural analysis takes calls into account. Since procedures can be called from
multiple places, a sound analysis must either approximate over all contexts
in which a procedure can be called, or the analysis must be context-sensitive.
Different forms of context sensitivity exist. For example, call-site sensitivity is a
form of context sensitivity that keeps a string of calls through which the current
procedure was reached. A well-known control-flow analysis, is k-CFA (Shivers
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1988).
When a programming language allows dynamic dispatch, e.g. through

function pointers, higher-order functions, or inheritance, the control-flow from
a call site can depend on run-time values. At this point inter-procedural data-
flow analysis becomes interdependent with a dynamic control-flow analysis.
This interaction between control-flow and data-flow is difficult to handle, as
more approximation in one analysis, which speeds up that analysis, will result
in more work for the other analysis. In object-oriented languages, the context
sensitivity that shows potential for these analyses is object-sensitivity, which
tracks the allocation sites of objects (Smaragdakis, Bravenboer and Lhoták
2011). Generally, finding the right contexts with a good trade-off in efficiency
and accuracy are a topic of active research.

We aim to support flow-sensitive, intra-procedural data-flow analysis in
FlowSpec as a start, which provides language designers with the tools to
accurately analyse local properties.

2.2.3 Monotone Frameworks

Monotone frameworks (Kam and Ullman 1977) is a formal method for describ-
ing data-flow analyses. We give a short introduction to the framework here.
Throughout this chapter we use the notation from F. Nielson, H. R. Nielson
and Hankin (2005), which is the dual notation of the original publication (e.g.
⊔ instead of ∧).

In short, monotone frameworks is a general lattice theoretic framework
for the definition of data-flow analyses. It captures the commonalities of
intra-procedural, flow-sensitive data-flow analyses, and requires a number
of components to be plugged in for any specific analysis. Given the correct
components, this framework not only gives a clear, terminating semantics to a
data-flow analysis, but also a simple worklist algorithm that can perform the
analysis. The components required to instantiate a monotone framework are:

• The control-flow graph of a program in the form of a label set, an edge list
of label pairs, and the starting labels.

• The type of data gathered by the data-flow analysis, along with its com-
plete lattice instance of finite height. The framework uses lattice theory to
guarantee a sound and terminating semantics.

• Transfer functions for every label in the control-flow graph, where the
functions are monotone increasing with respect to the lattice.

• An initial value for the data-flow analysis at the starting labels.

2.2.4 Control-flow Graphs

In order to make a data-flow analysis flow-sensitive, we need the control-
flow of a program. In monotone frameworks program fragments are labelled
(ℓ ∈ Lab) to distinguish different parts of the program. A control-flow graph
F is a set of edges (a subset of Lab× Lab) between different labels.

For a forward propagating data-flow analysis, this graph can be used as is.
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L = P(AExp)

⊑ =⊇
⊔ = ∩
⊥ = AExp(Prog)

ι = ∅

E = {init(Prog)}
F = flow(Prog)

fℓ(l) = (l \ kill([B]ℓ)) ∪ gen([B]ℓ)

where [B]ℓ ∈ blocks(Prog)

kill([x := a]ℓ) =
{

a′ ∈ AExp(Prog) | x ∈ FV(a′)
}

gen([x := a]ℓ) =
{

a′ ∈ AExp(a) | x /∈ FV(a′)
}

gen([b]ℓ) = AExp(b)

x Figure 2.3 The monotone framework instance for available expressions. An
l ∈ L is an element of the lattice. Two of those elements can be compared
with ⊑, and joined with ⊔. ⊥ is the bottom of the lattice. The framework
operates on the forward control-flow F, from the set of labels E, where the
initial analysis information is ι. Prog is the entire program, blocks collects
all labelled blocks, FV collects all free variables, init gives the initial label,
and flow gives the control flow of the argument. AExp gives all arithmetic
expressions.

For a backward propagating analysis the edges of the graph are simply flipped.
The framework also takes the ‘extremal labels’ E ∈ P(Lab), which are the start
nodes of the analysis.

2.2.5 Data-flow Type and Transfer Functions

Each control-flow graph node has an effect. An analysis specifies how this
effect influences the analysis through a transfer function fℓ : L→ L, where L is
the type of the information the data-flow analysis propagates. At the extremal
labels, this information is initialised with the extremal value ι.

An established factorisation of these transfer functions is the kill and gen sets
approach. For set based analyses, a kill set is defined separately from a gen set
for each control-flow node of interest. The transfer function is then generic:
first remove the kill set, then add the gen set.

Figure 2.3 shows the monotone framework instance for available expressions
analysis. The transfer function takes the set of available expressions, first
removes any expressions containing the variable that is assigned (or nothing
if it is not an assignment), then it adds any new expressions that do not
contain the variable that is assigned. Note how the gen set has to repeat the
conditions of the kill set. The reason for this repetition is that the right-hand
side of the expression, that generates available expressions, happens before
the assignment effect of the left-hand side. In a backward analysis this would
not be the case, therefore on first glance independent kill and gen sets are
sometimes dependent. We argue that this subtlety can be a source of analysis
bugs.

2.2.6 Control-flow and Lattices

If a control-flow graph node ℓ has the information Analysis◦(ℓ) before the
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effect of ℓ then we can use its transfer function fℓ to compute Analysis•(ℓ).
However, when multiple control-flow paths join at a certain node, we need to
merge the data from those different paths. We use the ⊔ operator for this to
reach these equations:

Analysis◦(ℓ) =
⊔ {

Analysis•(ℓ
′) | (ℓ′, ℓ) ∈ F

}
⊔ ιℓE

where ιℓE =

{
ι if ℓ ∈ E
⊥ if ℓ /∈ E

Analysis•(ℓ) = fℓ(Analysis◦(ℓ))

The open dot is the analysis result before the effect of ℓ, and the closed dot is
for after the effect of ℓ. The transfer function fℓ is used to compute the effect of
ℓ. The ⊔ operator is used to combine the analysis data after the previous nodes
ℓ′ as the analysis data right before the current node ℓ. We use the initial value
ι for the initial labels E and a ⊥ value elsewhere, where ⊥⊔ d = d = d ⊔⊥.

Finding the fixed point to these equations may not be possible though, as
loops in the control-flow graph make the equations recursive. Therefore we
need stronger guarantees, for which lattices are used.

Monotone frameworks require a complete lattice instance (⊤,⊥,⊑,⊔,⊓) for
the type L of the data-flow property. The intuition is that ⊤ is the value of L
that reads as “could be anything”, the coarsest approximation available. By
using the least upper-bound operator (⊔) we combine the information from
two paths in the control-flow so it soundly approximates both (upper bound),
while keeping as much information as possible (least upper bound).

In Figure 2.3, the monotone frameworks instance of available expressions
uses a powerset lattice. Available expressions analysis is a must analysis, which
only keeps information that must be true for all paths. Therefore the analysis
applies set intersection at join-points.

Now that we have a clearer definition of the ⊔ operator, we can resolve the
issue of finding a fixed point to the equations. Monotone frameworks have two
particular requirements. First, the transfer functions fℓ need to be monotone
increasing with respect to the lattice. This means that in a loop either the
information becomes more approximate, or it stays the same, in which case we
have a fixed point. Secondly, the lattice must adhere to the ascending chain
condition. In other words, the lattice must have a finite height. This way when
the information on a loop keeps increasing, it takes a finite number of steps to
reach ⊤, which is a fixed point for monotone increasing transfer functions.

Of course ⊤ is the coarsest approximation available. Although some approx-
imation is necessary to keep the analysis computable, we can usually do better
than ⊤ everywhere. The fixed point of the Analysis that we want is the least
fixed point. This fixed point has enough information to be valid, with as little
approximation as necessary. The accuracy of this fixed point is still dependent
on the choice of lattice L and transfer functions f .

In the original work on monotone frameworks (Kam and Ullman 1977)
the dual notion with meets (greatest lower bounds) and greatest fixed points
was used. There, the authors give the Meet Over all Paths (MOP) as the
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for unique ℓ in F:
if ℓ ∈ E:

Analysis◦(ℓ) := ι
else:

Analysis◦(ℓ) := ⊥

W := list-of(Lab)

while W ̸= []:
ℓ := W.pop()
for (ℓ, ℓ′) ∈ F:

if fℓ(Analysis◦(ℓ)) ̸⊑ Analysis◦(ℓ′):
Analysis◦(ℓ′) := fℓ(Analysis◦(ℓ)) ⊔ Analysis◦(ℓ′)
W.push(ℓ′)

for unique ℓ in F:
Analysis•(ℓ) := fℓ(Analysis◦(ℓ))

x Listing 2.1 A worklist algorithm to iteratively solve the equations of a mono-
tone framework instance. W is the worklist. Lab is the set of labels used
in the control-flow graph F.

desired solution, but show that this solution can be undecidable to calculate.
In cases where it can be calculated, the greatest fixed point coincides with it, in
cases where it is undecidable, the greatest fixed point safely approximates the
MOP solution (F. Nielson, H. R. Nielson and Hankin 2005, § 2.4.2). Therefore
a correct instantiation of a monotone framework gives a computable, safe
approximation of the run-time behaviour of a program.

2.2.7 Worklist Algorithm

Given an instance of a monotone framework, we can compute the fixed point
of the recursive equations iteratively with a worklist algorithm, such as the
one in Listing 2.1. This algorithm works in three steps. First it initialises the
analysis result Analysis◦ to what comes down to ιℓE, and the worklist to all
nodes in the control-flow graph. Second, it loops over the worklist, taking
out one node at a time, and propagates transferred analysis information to
successors in the control-flow graph. If that information is new ( ̸⊑) the ⊔
operator is used to add the information to the analysis information of the
successor, and that successor is added to the worklist again. Once no more
new information is discovered, the worklist becomes empty. The third step
computes Analysis• as defined in its formula.

2.2.8 Monotone Frameworks Recap

To summarise, to specify a data-flow analysis with monotone frameworks, we
need the following ingredients:

1. A finite flow, F ∈ P(Lab× Lab).

2. Labels ℓ ∈ Lab, which reference program fragments.

3. A set of extremal labels, E ∈ P(Lab), typically the initial label(s) of the
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flow.

4. A type L of the data-flow property, which is a complete lattice of finite
height.

5. Monotone transfer functions fℓ for every label ℓ in the control-flow graph.

6. An extremal value, ι ∈ L, for the extremal labels.

Monotone frameworks give a design pattern for correct data-flow analysis,
and an implementation for such an analysis. However, direct instantiations of
worklists for different analyses, especially analyses that use the results of other
analyses can result in a complex implementation that is difficult to update or
adapt.

In language workbenches we want to specify a data-flow analysis and get
the implementation ‘for free’, i.e. we abstract from the implementation method.
The iterative algorithm can still be used under the hood, but is no longer
directly seen. The specification should be easy to understand and avoid pitfalls
such as we saw in the gen and kill set definition of available expressions. In
short, we need a domain-specific language for data-flow analysis specification.

2.3 FlowSpec by Example

FlowSpec is a domain-specific language for specifying data-flow analysis, that
builds on the theory of monotone frameworks. A FlowSpec specification only
includes the analysis-specific elements, and from this specification we generate
an implementation for that analysis. In this section we introduce FlowSpec by
a number of examples.

2.3.1 Requirements

In language workbenches we want to specify a data-flow analysis and get the
implementation ‘for free’, i.e. we abstract from the implementation method.
The specification should be easy to understand and avoid pitfalls such as we
saw in the gen and kill set definition of available expressions for monotone
frameworks.

Within the context of a language workbench, we need a language that reuses
information that is already available within a language specification of the
workbench. We do not need to define a data-flow analysis directly on source
text of a program, as we can obtain the abstract syntax of that program within
the workbench. We can also reuse name and type analysis that is available.
Our domain-specific language does not need to support the specification of
such analyses, it should only support the use of the analysis results.

What we need then is a language that uses the concepts of abstract syntax,
names and types, and provides features to define what is distinctly part of the
domain of data-flow analysis. FlowSpec provides the features to define the
relation between the control-flow and the abstract syntax of a programming
language, and what effects control-flow nodes of the programming language
have for different data-flow analyses.
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module running-example

context-free syntax

Statement.Seq =
[[Statement]
[Statement]] {right}

Statement.Assign = [[ID] = [Expr];]

Statement.IfThenElse =
[if([Expr]) [Statement]
else [Statement]]

Statement.While =
[while([Expr])

[Statement]]

lexical syntax

ID = [a-zA-Z] [a-zA-Z0-9\_]*
INT = "-"? [0-9]+

context-free syntax

Expr.IntLit = INT
Expr.True = [true]
Expr.False = [false]
Expr.VarRef = ID

Expr = [([Expr])] {bracket}

Expr.UMin = [-[Expr]]
Expr.Mul = [[Expr] * [Expr]] {left}
Expr.Div = [[Expr] / [Expr]] {left}
Expr.Add = [[Expr] + [Expr]] {left}
Expr.Sub = [[Expr] - [Expr]] {left}

Expr.Not = [![Expr]]
Expr.And = [[Expr] && [Expr]] {left}
Expr.Or = [[Expr] || [Expr]] {left}
Expr.Eq = [[Expr] == [Expr]] {left}
Expr.Gt = [[Expr] > [Expr]] {left}
Expr.Lt = [[Expr] < [Expr]] {left}
Expr.Geq = [[Expr] >= [Expr]] {left}
Expr.Leq = [[Expr] <= [Expr]] {left}
Expr.Neq = [[Expr] != [Expr]] {left}

context-free priorities

{ Expr.UMin Expr.Not } >
{ left: Expr.Mul Expr.Div Expr.Mod } >
{ left: Expr.Add Expr.Sub } >
{ left: Expr.Lt Expr.Leq

Expr.Gt Expr.Geq } >
{ left: Expr.Eq Expr.Neq } >
Expr.And > Expr.Or

x Listing 2.2 The SDF3 grammar for the running example language While.

2.3.2 Concrete and Abstract Syntax

In Spoofax the concrete and abstract syntax of a programming language are
defined in SDF3. As an example, we provide the SDF3 definition of the syntax
of our running example language in Listing 2.2.

This SDF3 grammar uses templates to specify grammar rules along with
some basic formatting hints. Within the outer brackets (either square or
angled), are terminals, within another pair of brackets are non-terminals. The
first rule defines that a statement can be a sequence of two statements. The
annotation right disambiguates this rule by making the rule right-associative.
In other words, a sequence of three statements S1 S2 S3 is parsed as S1 (S2 S3).
In this example grammar we define statements as sequences of statements,
assignment statements, if statements and while loop statements.

We define expressions within conditions and assignment right-hand sides.
Expressions include a number of binary and unary operations which have
associativity and priority to disambiguate. The lexical syntax for identifiers
and integer literals is defined at the end with some regular expressions.

The abstract syntax of our running example is already written as part of the
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signature
constructors // generated from SDF3 spec

Seq : Statement * Statement -> Statement
Assign : ID * Expr -> Statement
IfThenElse :

Expr * Statement * Statement -> Statement
While : Expr * Statement -> Statement

constructors
VarRef : ID -> Expr

constructors // manually defined to desugar into
BinOp : BinOp * Expr * Expr -> Expr
UnOp : UnOp * Expr -> Expr

constructors
UMin : UnOp
Mul : BinOp
Div : BinOp
Add : BinOp
Sub : BinOp
Not : UnOp
And : BinOp

constructors
Or : BinOp
Eq : BinOp
Gt : BinOp
Lt : BinOp
Geq : BinOp
Leq : BinOp
Neq : BinOp

x Listing 2.3 The abstract syntax of the running example language While.

x = a + b;
y = a * b;
while(y > a + b) {

a = a + 1;
x = a + b;

}

Seq(Assign("x", BinOp(Add(), VarRef("a"), VarRef("b"))),
Seq(Assign("y", BinOp(Mul(), VarRef("a"), VarRef("b"))),
While(BinOp(Gt(), VarRef("y"), BinOp(Add(), ...)),
Seq(Assign("a", BinOp(Add(), VarRef("a"), IntLit("1"))),
Assign("x", BinOp(Add(), VarRef("a"), VarRef("b")))
))))

x Listing 2.4 An example program with its desugared abstract syntax tree.

SDF3 grammar, in the form of constructor names on the rules. A sequence of
statements uses Seq, an addition uses Add, et cetera. From the grammar we can
generate the signatures of the abstract syntax, as shown in Listing 2.3. The first
two sections of signatures define the shape of the abstract syntax tree (AST)
as defined in the grammar. However, we have desugared unary and binary
operations to common constructors that have a separate operator field. These
constructor signatures are hand-written, and some simple transformation rules
can translate the original AST to this desugared version that we will operate
on throughout the examples.

In Listing 2.4 we give an example program along with its abstract syntax
tree. The different Spoofax meta-languages, including FlowSpec, work with
these ASTs by pattern matching against parts of the tree.

2.3.3 Name and Type Analysis

Name and type analysis is extracted from an NaBL2 specification. This analysis
annotates the entire tree with unique numbers, so different occurrences of a
name can be distinguished from each other. All information of names and
types is then attached to these occurrences.

The reason we care about name and type analysis, is that data-flow analysis
commonly gathers information about names. Many programming languages
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allow shadowing of names, i.e. definition of a name in an inner scope when
the same name is present already in an outer scope. Therefore the name of a
variable is not unique enough when data-flow analysis collects information on
that name.

In FlowSpec we operate on analysed ASTs, in which name occurrences
have unique numbers. Within FlowSpec we borrow the NaBL2 notation
Namespace{name} for name occurrences. In FlowSpec, such an occurrence de-
notes names after name analysis. That is, names represented by the same
occurrence, correspond to the same declaration. Thus, name capture is not a
concern in FlowSpec.

2.3.4 Control-flow Graphs

For flow-sensitive data-flow analysis we require a control-flow graph. Control-
flow graphs are a finite representation of a possible infinite set of paths through
a program. For example, as statements of a program are executed, control flows
from one statement to the next. However, as soon as a program has a loop,
control can flow around the loop or at some point exit the loop. A control-flow
graph is a finite model that show where control could flow. Thereby a loop in a
program become in a loop in a control-flow graph. Examples of control-flow
graphs can be found back in Figure 2.1 on page 19 and Figure 2.2 on page 20.

2.3.5 Mapping from Abstract Syntax to Control Flow

In FlowSpec we build control-flow graphs between occurrences in the AST. Not
only a string occurrence as is usually used for names, but also entire subtrees of
the AST can be control-flow graph nodes. The FlowSpec specification defines
which AST nodes should be considered control-flow graph nodes, and how
control flows within and between different AST nodes.

Consider Listing 2.5 where we have defined some example mapping rules.
The rules are defined case-by-case using patterns to match the signature from
Listing 2.3. Each rule uses the contextual entry and exit nodes to connect
the sub-graph of the matched AST node to the outer graph. These nodes do
not show up in the final control-flow graph. When the AST node matched
by the pattern should be included as a control-flow node, we use the this
keyword to denote that. The direct use of a pattern variable from the AST
pattern is substituted with the subgraph of that AST node in accordance with
other control-flow rules.

Listing 2.6 shows how control-flow rules can be applied to a program in a
number of steps. First the sequence rule is used to create an edge between
the two statements. Then the assignment rule is used to create nodes of the
assignments, with the expression preceding it. Then the binary operation rule
creates a node for the operation and its operands, and finally the operands are
turned into nodes themselves.

The rule of IfThenElse shows that multiple chains of edges in the control-flow
graph may be defined. This allows us to express conditions. The sub-graph of
condition c is followed by both the subgraph of the then-branch and subgraph
of the else-branch. Each of the branches connect to the exit of the construct.
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module control

control-flow rules
Assign(_, e) = entry -> e -> this -> exit

Seq(s1, s2) = entry -> s1 -> s2 -> exit

IfThenElse(c, t, e) = entry -> c -> t -> exit,
c -> e -> exit

While(c, b) = entry -> c -> b -> c -> exit

BinOp(_, l, r) = entry -> l -> r -> this -> exit

UnOp(_, e) = entry -> e -> this -> exit

node VarRef(_)
node IntLit(_)
node True()
node False()

x Listing 2.5 Control-flow graph rules for the While language. Each rule can
have one or more chains of edges, where entry and exit represent the
connection between the local control flow the rest of the graph.

JSeq(
Assign("a", BinOp(Add(), VarRef("a"), IntLit("1"))),
Assign("x", BinOp(Add(), VarRef("a"), VarRef("b")))

)K

entry ->
JAssign("a", BinOp(Add(), VarRef("a"), IntLit("1")))K ->
JAssign("x", BinOp(Add(), VarRef("a"), VarRef("b")))K ->
exit

entry ->
JBinOp(Add(), VarRef("a"), IntLit("1")))K -> node Assign("a", . . .) ->
JBinOp(Add(), VarRef("a"), VarRef("b")))K -> node Assign("x", . . .) ->

exit

entry ->
JVarRef("a")K -> JIntLit("1")K ->
node BinOp(Add(), . . ., . . .)) -> node Assign("a", . . .) ->
JVarRef("a")K -> JVarRef("b")K ->
node BinOp(Add(), . . ., . . .)) -> node Assign("x", . . .) ->

exit

entry ->
node VarRef("a") -> node IntLit("1") ->
node BinOp(Add(), . . ., . . .)) -> node Assign("a", . . .) ->
node VarRef("a") -> node VarRef("b") ->
node BinOp(Add(), . . ., . . .)) -> node Assign("x", . . .) ->

exit

x Listing 2.6 Control-flow graph rules applied to a piece of abstract syntax,
where double square brackets show parts of the AST that are not processed
yet.
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module liveness

properties
live : MaySet(name)

property rules
live(Assign(n, _) -> s) = live(s) \ { Var{n} }

live(VarRef(n) -> s) = live(s) \/ { Var{n} }

live(_ -> s) = live(s)

x Listing 2.7 Live Variables specification in FlowSpec. Note how the rule for
assignments does not inspect the right-hand side expression. Instead
the control-flow is defined within expressions (not in this figure), and a
separate rule for the variable reference expressions adds live variables.
Names are added to the live variables as names within a namespace
Var. External name information is used to handle name issues such as
shadowing.

Multiple uses of the c sub-graph refer to the same subgraph. This is also used
in the While rule, where multiple uses of condition c construct the loop.

In these rules binary and unary operations, i.e. expressions, are also con-
sidered part of the control-flow graph. This is not a restriction in FlowSpec,
we define the control-flow this way to the benefit of our data-flow analysis
definitions later. One could also use node c within the chain of edges to make
condition expression c a node in the control-flow graph.

The rules for variable references and integer literals are a shorthand to define
that this is a node in the control-flow graph and it has no further control-flow
inside. The following would be equivalent to the variable reference rule:

VarRef(_) = entry -> this -> exit

2.3.6 Data-Flow Type and Transfer Functions

FlowSpec defines data-flow analyses as properties on the control-flow graph.
During analysis, the data of this property is propagated along the control-flow
graph. Every node in the control-flow graph has an associated effect on this
data.

In Listing 2.7 we show FlowSpec’s analogue of transfer functions for live
variables analysis: property rules. Property rules show both the direction of the
data-flow analysis, in this case backward, and define the data-flow property
in terms of itself. We have a rule for assignments, which only applies the
effect of the assignment itself and disregards the right-hand side expression. A
separate rule for the variable reference expression handles the effect of reading
a variable. We are able to split these two effects because earlier we defined
control-flow in expressions too.

The FlowSpec specification of available expressions is given in Listing 2.8.
We use an external property refs from NaBL2 to extract references from
expressions. The effects of the assignment and its right-hand side expression
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module availability

properties
available: MustSet(term)
external

refs: Set(name)
property rules

available(prev -> Assign(n, _)) =
{ expr |

expr <- available(prev),
!(Var{n} in refs(expr) }

available(prev -> e@BinOp(_,_,_)) =
available(prev) \/ {e}

available(prev -> e@UnOp(_,_,_)) =
available(prev) \/ {e}

available(prev -> _) = available(prev)

x Listing 2.8 Available Expressions specification in FlowSpec. We consider
references in expressions a separate concern based on names, not flow and
therefore out of scope for our language. Note how the assignment rule
only handles the assignment effect, expressions are visited separately.

are split over multiple rules again. The assignment filters out those expressions
that use the variable that is being assigned to. We can express this as a direct
filter instead of relying on global program information of all expressions, as was
the case in the monotone frameworks definition in Figure 2.3 on page 22. Since
our control-flow graph includes the expressions in an assignment separately, it
models the ordering of effects directly. Therefore the FlowSpec specification
does not suffer from the subtle interdependence that the traditional kill-gen
definitions have.

2.3.7 Lattices and Termination

The control-flow can split and join because of conditional control-flow such
as an if statement. We can propagate data along both edges of a split, but
need to merge the data coming from multiple directions at a join. The data is
merged before the property rule of the join-point node is applied. We require
a lattice instance (⊤,⊥,⊑,⊔,⊓) for the type of the data-flow property, and use
the least-upper bound ⊔ at join points in the control-flow. In our examples the
MaySet and MustSet are lattice instances that use the Set type:
properties

live : MaySet(name)
available : MustSet(term)

A MaySet performs set unions at control-flow join points and compares
with non-strict subset comparison. A MustSet uses intersection and non-strict
superset comparison. It uses a symbolic bottom element to represent the full
set of possible values in the analysis.

Chapter 2 U Language Parametric Control- and Data-Flow Analysis 31



module busyness

properties
external

refs: Set(name)

properties
veryBusy: MustSet(term)

property rules
veryBusy(Assign(n, e) -> next) =

{ expr |
expr <- veryBusy(next),
!(n in refs(expr)) }

veryBusy(e@BinOp(_,_,_) -> next) =
veryBusy(next) \/ {e}

veryBusy(e@UnOp(_,_,_) -> next) =
veryBusy(next) \/ {e}

veryBusy(_ -> next) = veryBusy(next)

x Listing 2.9 Very Busy Expressions specification in FlowSpec.

module reach

properties
definition: MaySet(name * occurrence)

property rules

definition(prev -> this@Assign(n, e)) =
{ (Var{n}, occurrence(this)) } \/
{ (m, l) |

(m, l) <- definition(prev),
m != Var{n} }

definition(prev -> _) = definition(prev)

x Listing 2.10 Reaching Definitions specification in FlowSpec.

2.3.8 Very Busy Expressions

Very busy expression analysis provides the set of expressions which will
definitely be calculated in the future. This information can be used to hoist
an expression out of an if statement if it is calculated in both branches. In
Listing 2.9 we provide the definition of very busy expressions analysis in
FlowSpec. Note how similar this analysis is to the available expressions
analysis.

2.3.9 Reaching Definitions

Reaching definition analysis is an analysis that provides the positions in
the program where a variable was last assigned a value. This can be multiple
positions since a variable may be assigned in different conditional paths in
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module constants

prop constProp: CP

constProp(prev -> Assign(n, e)) =
match constProp(prev) with

| M1(m, v) => M(m \/ {Var{n} |-> v})
| _ => CP.top

constProp(prev -> Add(e1,e2)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constAdd(l,r))
| _ => CP.top

constProp(prev -> VarRef(n)) =
addResult(

constProp(prev),
getMap(constProp(prev))[Var{n}])

constProp(prev -> _) = constProp(prev)

x Listing 2.11 Constant propagation specification in FlowSpec. CP holds the map
of names to constants and 0, 1 or 2 constants from previous computations.

the control-flow. See Listing 2.10 for the FlowSpec description of reaching
definitions. To preserve the information from all branches, we use a MaySet. The
occurrence is used to denote the position in the program where the assignment
occurred.

The sole rule for reaching definitions analysis of our example language is
that of the assignment. There we remove any previously reaching definitions
of the currently assigned variable. We add the pair of the name and the
occurrence of the assignment.

2.3.10 Constant Propagation and Folding

Constant propagation is the name of both an analysis and the corresponding
optimisation. The optimisation replaces uses of a variable with its value if
that value is guaranteed to be constant. Constant folding is the optimisation
that computes constant expressions and replaces those expressions with the
computed result. We combine these two optimisations and make them part
of our constant propagation, to improve the accuracy of the analysis results.
Because of constant folding, more constants can be found. Because more
constants can be found, and filled into expressions, more constant expressions
can be folded.

In Listing 2.11 and Listing 2.12 we give the definition of this combined
constant propagation analysis in FlowSpec. The constant propagation property
had a Map type. A FlowSpec Map forms a lattice if the value type forms a lattice.
Any key not bound in the map, instead maps to the top of the lattice of the
value type. The ⊔ and ⊑ operators are defined point-wise. This means that if
a variable is only constant in one condition branch, when it joins with another
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types
CPType =

| M(Map(name, Const))
| M1(Map(name, Const), ConstProp)
| M2(Map(name, Const), ConstProp, ConstProp)

ConstProp =
| Top()
| Const(int)
| Bottom()

functions
getMap(cpt: CPType) =

match cpt with
| M(m) => m
| M1(m,_) => m
| M2(m,_,_) => m

addResult(cpt: CPType, v: Const) =
match cpt with

| M1(m, v1) => M2(m, v1, v)
| _ => M1(getMap(cpt), v)

constAdd(l: Const, r: Const) =
match(l,r) with

| (Const(i), Const(j)) => Const(i+j)
| _ => Const.top

lattices
CP where

type CPType

lub(l, r) = match (l,r) with
| (M(l), M(r)) => M(Map.lub(l,r))
| (M1(l, cl), M1(r, cr)) => M1(Map.lub(l,r), Const.lub(cl,cr))
| (M2(l, cl1, cl2), M2(r, cr1, cr2)) => M2(Map.lub(l,r), Const.lub(cl1,

cr1), Const.lub(cl2, cr2))
| _ => CP.top

bottom = M(Map.bottom)

top = M(Map.top)

Const where
type = ConstProp

lub(l, r) = match (l,r) with
| (Top(), _) => Top()
| (_, Top()) => Top()
| (Const(i), Const(j)) => if i == j then Const(i) else Top()
| (_, Bottom()) => l
| (Bottom(), _) => r

bottom = Bottom()

x Listing 2.12 The type, function and lattice definitions for constant propagation
specification in FlowSpec.
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module sign

properties
sign : MaySet(name * Sign)

property rules
sign(prev -> Assign(n, e)) =

(Var{n}, interpSet(sign(prev), e)) \/
{ (m, s) | (m, s) <- sign(prev), m != Var{n} }

sign(prev -> _) = sign(prev)

functions
interpSet(set, e) = match e with

| VarRef(n) => { s | (m, s) <- set, m == Var{n} }
| BinOp(op,e1,e2) =>

{ s | l <- interpSet(set, e1),
r <- interpSet(set, e2),
s <- interpBin(op,l,r) }

// etc.

interpBin(op, l, r) = match op with
| Add() => (if l == r

then { l }
else match (l, r) with

| (_, Zero()) => { l }
| (Zero(), _) => { r }
| _ => { Pos(), Neg(), Zero() })

// etc.

types
Sign =

| Zero()
| Neg()
| Pos()

x Listing 2.13 Sign Analysis specification in FlowSpec.

branch the variable will no longer be considered constant.
The constant value lattice has a symbolic top and bottom, and constants

which are not ordered. Therefore when two branches in the control-flow join,
and different constant values for the same variable are found, that variable
is no longer constant at the join point. The constant propagation property
rule takes assignment into account and applies the foldConst function, which
computes constant expressions.

2.3.11 Sign Analysis

Sign analysis is a data-flow analysis that computes the possible sign of integers
typed variables. This can be used to detect if a comparison condition will
always evaluate to a constant, which makes further analysis more accurate as
a branch of control-flow is eliminated. Sign analysis is similar in definition to
constant propagation as illustrated in Listing 2.13.
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module initialization

properties
definite: MustSet(name)

property rules

definite(prev -> this@Assign(n, e)) =
definite(prev) \/ { Var{n} }

definite(prev -> _) = definite(prev)

x Listing 2.14 Definite Assignment specification in FlowSpec.

2.3.12 Definite Assignment

Definite assignment analysis keeps a set of variables which have definitely
been assigned a value. This information can be used to give warnings or error
upon the use of a possibly uninitialised variable. The FlowSpec specification
of definite assignment is in Listing 2.14.

2.4 The Semantics of FlowSpec

In this section we present the semantics of FlowSpec. For brevity we only show
rules for the novel parts of the language, and use monotone frameworks as the
semantic model for the language. We will discuss the language in roughly the
same order as in the last section. Please refer to Figure 2.4 for a small syntax
definition of the language, from which we will use non-terminals to introduce
judgements of the semantics.

Note that the this construct in FlowSpec is syntactic sugar for a node t
where t refers to the entire AST that was matched with pattern p.

2.4.1 Control-flow Rules

The control-flow rules, that map the abstract syntax of a language to its control-
flow, are defined case-wise with AST patterns. To model the behaviour of
the virtual entry and exit nodes in these rules, we employ a constraint based
semantics, given in Figure 2.5 on page 38. The smallest set that satisfies these
constraints is the control-flow graph that the rules define. We use JpKaℓ = Γ to
abstract over pattern matching, where p is the pattern, aℓ is the labeled AST
node, and Γ is the environment with bindings that come from the match. The
extremal labels are all possible, valid bindings of ℓ◦ and ℓ• for [rulei] where aℓ

is the whole program.
In general the four labels left of the turnstile are the virtual entry and exit

labels, and the start and end labels. The entry and exit labels are mostly left
to be inferred by the rules. The chain rule [noedge] connects the labels in a
chain by using an inference variable as a label to connect the two judgements.
The chain rule [edge] connects the labels by using two inference variables and
adding an edge between these variables to the graph.

For the chain element rules [en] and [ex] we assume that entry nodes are
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S ::= control-flow rules G control-flow section
properties D dataflow prop def section
property rules R dataflow prop rules section

G ::= p = C {, C} control-flow rules
C ::= E → E {→ E} edge chains
E ::= entry exit start end chain elements

n node n
D ::= n : t property definitions
R ::= n P = e property rules
P ::= p → n match ahead

n → p match behind
p ::= n(p) term pattern

(p) tuple pattern
_ wildcard pattern
n pattern variable
n@p as pattern

e ::= n variable reference
n(n) property lookup
n(e) function application
if e then e else e if else
match e with {| p ⇒ e} pattern match
type(n) type lookup
n {n} name lookup
occurrence(n) occurrence lookup
e == e e != e !e equality, inequality and negation
(e) n(e) tuple and term literals
s i string and number literals
{e} set literal
{e | p ← e{,p ← e}{,e}} set comprehension
{{e 7→ e}} e[e] map literal and lookup
e ∪ e e \ e e in e e ∩ e set operations

n names
t types
s string
i number

x Figure 2.4 The core grammar of FlowSpec.

only on the left-most end of a chain, and exit nodes are only on the right-most
end of a chain. The entry and exit rules simply equate the two labels left of
the turnstile, without putting any constraints on the two labels. The [end] and
[start] rules are similar, except these use the downward propagated startℓ and
endℓ nodes that are created by the root rule. The [lab] rule looks up the label
of the AST node, and requires that both labels left of the turnstile are equal to
this label. This rule is the one that adds an actual label to the system of rules,
instead of an inference variable. This forces the [edge] rule to be used between
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Cfg root rule constraints ⊢ JGKaℓ ⊇ Lab× Lab

JpKaℓ = Γ 1 ≤ i ≤ m
startℓ, endℓ, startℓ, endℓ; Γ ⊢ Ci ⊇ gi

⊢ Jroot p = C1, . . . , CmKaℓ ⊇ gi

[rulei]

Cfg rule constraints ℓ, ℓ, ℓ, ℓ ⊢ JGKaℓ ⊇ Lab× Lab

JpKaℓ = Γ ℓ◦, ℓ•, ℓs, ℓe; Γ ⊢ Ci ⊇ gi 1 ≤ i ≤ m

ℓ◦, ℓ•, ℓs, ℓe ⊢ Jp = C1, . . . , CmKaℓ ⊇ gi

[rulei]

Cfg chain constraints ℓ, ℓ, ℓ, ℓ; Γ ⊢ C ⊇ Lab× Lab

ℓ◦, ℓ, ℓs, ℓe; Γ ⊢ E1 ⊇ g1
ℓ, ℓ•, ℓs, ℓe; Γ ⊢ E2 → . . .→ Em ⊇ g2

ℓ◦, ℓ•, ℓs, ℓe; Γ ⊢ E1 → E2 → . . .→ Em ⊇ g1 ∪ g2
[noedge]

ℓ◦, ℓ1, ℓs, ℓe; Γ ⊢ E1 ⊇ g1 ℓ1 ̸= ℓ2
ℓ2, ℓ•, ℓs, ℓe; Γ ⊢ E2 → . . .→ Em ⊇ g2

g3 = {(ℓ1, ℓ2)}
ℓ◦, ℓ•, ℓs, ℓe; Γ ⊢ E1 → E2 → . . .→ Em ⊇ g1 ∪ g2 ∪ g3

[edge]

Cfg element constraints ℓ, ℓ, ℓ, ℓ; Γ ⊢ E ⊇ Lab× Lab

ℓ◦, ℓ◦, ℓs, ℓe; Γ ⊢ entry ⊇ ∅
[en]

ℓ•, ℓ•, ℓs, ℓe; Γ ⊢ exit ⊇ ∅
[ex]

ℓe, ℓ•, ℓs, ℓe; Γ ⊢ end ⊇ ∅
[end]

ℓ◦, ℓs, ℓs, ℓe; Γ ⊢ start ⊇ ∅
[start]

Γ(n) = aℓ

ℓ, ℓ, ℓs, ℓe; Γ ⊢ node n ⊇ ∅
[lab]

Γ(n) = aℓ

ℓ◦, ℓ•, ℓs, ℓe ⊢ Jp = c1, . . . , cmKaℓ ⊇ g

ℓ◦, ℓ•, ℓs, ℓe; Γ ⊢ n ⊇ g
[cfg]

x Figure 2.5 Semantic constraints of the control-flow rules in FlowSpec

two AST nodes, resulting in actual edges in the constraints. Lastly the [cfg]
rule handles the recursive call of cfg, where it will use any cfg rule from the
program which matches the AST node that the variable refers to.

2.4.2 Transfer Functions

Transfer functions for properties come from the property rules in FlowSpec.
These rules define Analysis•(ℓ) in terms of Analysis•(ℓ

′). However, there can
be multiple matching edges, multiple ℓ′. Therefore, we use Analysis◦(ℓ) =⊔
(ℓ,ℓ′)∈F Analysis•(ℓ

′) for recursive calls instead. This means that we can map
our property rules onto mathematical transfer functions, which is what we
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Transfer function mapping Γ ⊢ R ⇒ F

Γ ⊢ JpKaℓ = Γ′ Γ′ ⊢ Je[n nadj := l]K ⇒ eλ

Γ ⊢ Jn nadj → p = eKaℓ ⇒ f n
ℓ (l) = eλ

[transfw]

Γ ⊢ JpKaℓ = Γ′ Γ′ ⊢ Je[n nadj := l]K ⇒ eλ

Γ ⊢ Jn p→ nadj = eKaℓ ⇒ f n
ℓ (l) = eλ

[transbw]

Γ ⊢ JpKaℓ = Γ′ Γ′ ⊢ JeK ⇒ eλ

Γ ⊢ Jn p = eKaℓ ⇒ f n
ℓ (l) = eλ

[trans]

x Figure 2.6 Mapping of transfer functions in FlowSpec to Monotone Frame-
works

Expression semantics Γ ⊢ e ⇒ V

Γ ⊢ e ⇒ vi

Γ ⊢ occurrence(e) ⇒ i
[occ]

Γ ⊢ occurrence(e) ⇒ i

Γ ⊢ type(e) ⇒ Ti
[type]

Γ ⊢ occurrence(n2) ⇒ i
⊢ n1 {n2}i ∈ R

S ⊢ n1 {n2}i 7−→ n1 {n2}j

Γ ⊢ n1{ n2 } ⇒ n1 {n2}j
[ref]

Γ ⊢ occurrence(n2) ⇒ i
⊢ n1 {n2}i ∈ D

Γ ⊢ n1{ n2 } ⇒ n1 {n2}i
[decl]

Γ ⊢ n1(n2) ⇒ n1,•(n2)
[prop]

x Figure 2.7 Big-step semantics of a subset of expressions in FlowSpec. An
occurrence can only be found on expressions that evaluate to terms from
the program, which have an occurrence number i. The static components
used are: the set of references R and declarations D, the scope graph S ,
and the type relation T .

do in Figure 2.6. Again, we abstract over pattern matching, and we translate
expressions into lambda terms to fit the mathematical framework.

We use F for the transfer function space. The property rules are translated
by pattern matching on the AST, then substituting all recursive calls with l, the
argument name of the transfer function, and finally translating the functional
code into a single mathematical expression.

A mapping from expressions to lambda terms would be a tedious exercise,
therefore we separately define the big-step semantics of the interesting part
of the expressions in Figure 2.7. In particular we have describe to lookup of
occurrences, types and names. The occurrence lookup extracts the occurrence
index from a term that originated from the program. Type lookup uses the
occurrence index to uniquely identify a term in the program and looks up the
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S ::= . . . Sections
lattices TL Lattice definition section
types TT Type definition section
functions TF Function definition section

TL ::= n t where L Lattice definitions
TT ::= n = n t

{
| n t

}
(ADT) Type definitions

TF ::= n {(n: t)} = e Function definitions
L ::= type = t lub(n, n) = e leq(n, n) = e Lattice components

bottom = e top = e glb(n, n) = e

x Figure 2.8 The types and function part of FlowSpec’s grammar.

type ConstProp =
| Top()
| Const(int)
| Bottom()

lattice Const where
type = ConstProp

lub(l, r) = match (l,r) with
| (Top(), _) => Top()
| (_, Top()) => Top()
| (Const(i), Const(j)) => if i == j then Const(i) else Top()
| (_, Bottom()) => l
| (Bottom(), _) => r

bottom = Bottom()

x Listing 2.15 A constant propagation type and lattice in FlowSpec. The ⊑
operation is derived from the ⊔ operation by default, although we allow
both to be defined.

type in globally available type relation T . Next to type information, we also
have access to name information from static analysis, such as scope graph S ,
set of reference R, and set of declarations D. This provides the information
necessary for the two name lookup rules, which together normalise names to
their declaration. A declaration is directly found in the D, while a reference in
R is resolved using the scope graph. These normalised names give an intuitive
equality semantics for names in FlowSpec: names that resolve to the same
declaration are the same.

In the rules for transfer functions we saw that a property rule can use the
property information from the neighbouring node. A property can also make
use of other properties that have already been calculated. Note that this means
that properties cannot depend on each other cyclically. As long as no cyclic
dependency exists, we can define a property lookup that uses the property
information after the effect of the node ([prop]).

2.4.3 Lattices

Users of FlowSpec can define their own algebraic data types and lattice defini-
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tions on these types. Of the 5-tuple (⊤,⊥,⊑,⊔,⊓), ⊓ and ⊤ are not actually
used by the implementation and may be left out of the lattice definition. The
other three elements are called bottom, leq and lub. The grammar for this part
of the language can be found in Figure 2.8. The lattice definition contains an
associated type to that it can be used in any place where a type can be used. We
provide an example of a constant propagation lattice in Listing 2.15. Lattices
are required in the type position of a data-flow property definition. External
property definitions, which may give access to other analysis information such
as name sets and type are not required to hold lattices.

2.4.4 Built-in Types and Functions

FlowSpec has the built-in types Set, Map and List, and a number of built-in
functions on these types. The MaySet and MustSet can technically be defined
within FlowSpec. However, the MustSet needs a symbolic bottom value to
represents the largest possible set. For ease of use we make MustSet built-in so
values from the lattice can be considered sets instead of a union type of sets
and the symbolic bottom value.

2.5 Implementation

We integrated our implementation of FlowSpec in the Spoofax (Kats and E.
Visser 2010) language workbench. Spoofax provides domain-specific meta-
languages to declaratively specify a programming language. In this section we
provide an overview of how FlowSpec is integrated into Spoofax and what the
different parts of the FlowSpec implementation are.

2.5.1 Architecture

Consider Figure 2.9. SDF3 is used for the specification of the grammar and
abstract syntax, from which a parse table and different editor services are
extracted (Kats, Kalleberg and E. Visser 2010). The parse table is used by the
parser in Spoofax to parse program text into an abstract syntax tree (AST).
NaBL2 (van Antwerpen et al. 2016) is used from specifying name and type
rules, based on the scope graphs (Néron et al. 2015) model that can handle
many different binding patterns. With an NaBL2 specification, Spoofax can
extract constraints from a program AST, which are fed to a custom constraint
solving engine that builds the scope graph.

FlowSpec is active in this same stage. Based on a FlowSpec specification, in
particular the control-flow rules, we can automatically extract more constraints
from the program AST to build the control-flow graph (CFG). The same
constraint solving engine is used, which we adapted to be able to build a
control-flow graph. At this point each CFG node is also associated with a
transfer function.

The transfer functions, derived from the property rules, are passed to a
separate fixed-point solver that we built for FlowSpec, along with the CFG and
scope graph. Remember that name information from the scope graph is also
used by FlowSpec. The end result is the computed data-flow properties, which
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Program text

Parser

SDF3 grammar

Constraint collector

NaBL2 rules

FlowSpec rules

Constraint solver

Fixed point solver

FlowSpec results

parse table

AST

cfg rules

constraints

scope graph,
CFGproperty rules,

lattices

x Figure 2.9 Architecture diagram of FlowSpec within the context of the Spoofax
language workbench. A program from an object language is first parsed
using a grammar in SDF3. Then we use an NaBL2 static semantics
definition to analyse the names and types in the program. The same
machinery is used to build the control flow graph, based on the FlowSpec
control flow graph rules. A separate fixed point solver is the new addition
that computes data-flow information based on the FlowSpec specification.

can be queried in a later stage. These properties are connected to CFG nodes,
which are in turn AST nodes, therefore you need only the AST node and the
name of the property to request the information.

2.5.2 Control-flow Graph Construction

The control-flow graph is built in two steps. First the CFG rules from a
FlowSpec specification are used to extract edges from the program AST. The
edge list is used to create the control-flow graph. At this point the control-flow
graph still uses explicit artificial nodes for every entry and exit.

2.5.3 Data-flow Solver

The data-flow solver takes in the CFG, the scope graph and the transfer
functions. We apply the transfer functions through an interpreter written in
the Truffle (Wimmer and Würthinger 2012) framework.

The simplest version of a solving algorithm for monotone frameworks is a
worklist algorithm. All nodes of the CFG are added to the worklist algorithm.
When the algorithm computes a new value for a node from the worklist, all
out-neighbours of that node in the CFG get re-added to the worklist. Although
this is a correct algorithm, it may compute information in an inefficient order
when the graph has loops. See Figure 2.10 for a visual example of efficient and
inefficient order.
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1

2

3

4

5 Inefficient 3 2 1 5 4 3 2 1 5 4 3 2 1

Efficient 3 5 4 3 5 4 3 2 1

x Figure 2.10 An illustration of efficient and inefficient order in a backward
analysis that requires two round through loop 3,4,5 before reaching a fixed
point. The inefficient order always propagates from 3 to 2,1 first, whereas
the efficient order first propagates from 3 to 5,4.

Strongly Connected Components

We first compute a topological ordering of strongly connected components
(SCCs) in the control-flow graph (Horwitz, Demers and Teitelbaum 1987;
Jourdan and Parigot 1990). Within each SCC we use a reverse post-order of
the depth first spanning forest (Kam and Ullman 1976). This ordering is more
efficient in that we can compute fixed points per SCC and only propagate
information to other SCCs in the graph afterwards.

It is also designed so the initial ⊥ value of the lattice is not given to the
user-defined transfer functions, it only occurs in lattice operations ̸⊑ and ⊔.
This can be important as in general a must analysis has the set of all possible
values as the bottom of the lattice. This can of course be restricted to a set
with all possible values from the program, but such a set would then have to
be provided by the analysis author. Instead we can make sure this is not a
concern by not exposing ⊥ to user-defined transfer functions, which allows
us to describe ⊥ symbolically for must analysis. The lattice operations have
clearly defined laws around ⊥ without needing to look into the set, so we can
implement the operation’s cases with ⊥ symbolically.

The computation of the ordering uses a slightly adapted version of Tarjan’s
strongly connected components (SCCs) algorithm (Tarjan 1972). The detailed
explanation of the adaptation is in Appendix A.1.

Solving Algorithm

As our data-flow properties may (non-cyclically) depend on each other, we
order the properties topologically and then solve each one in turn. The
algorithm is given in pseudo-code in Listing 2.16.

The first inner loop initialises the property analysis. The extremal labels
starts of the control-flow graph F′ are initialised with the extremal value
Prop.initial, everything else with ⊥.

The main loop traverses the topologically ordered strongly connected com-
ponents (SCCs), and uses a while loop to recompute the SCC if the previous
iteration changed something. No worklist is necessary as any node can influ-
ence any other node.
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for Prop in topologically ordered Properties:
for ℓ in F:

Prop◦(ℓ) := ⊥

if Prop.direction = forward:
F′ := F

else:
F′ := F.flipped

for ℓ in F′.starts:
Prop◦(ℓ) := Prop.initial

for scc in F′.sccs:
done := false
while not done:

done := true
for ℓ in scc:

for (ℓ, ℓ′) in F′.edges:
if f Prop

ℓ (Prop◦(ℓ)) ̸⊑ Prop◦(ℓ′):
Prop◦(ℓ′) :=

f Prop
ℓ (Prop◦(ℓ)) ⊔ Prop◦(ℓ′)

if ℓ′ in scc:
done := false

for ℓ in F′:
Prop•(ℓ) := f Prop

ℓ (Prop◦(ℓ))

x Listing 2.16 Worklist algorithm used in the implementation of FlowSpec.
Properties is the list of dataflow properties. F is the control flow graph.
f Prop
ℓ is the transfer function of property Prop for control flow graph node
ℓ. Lattice operations and values are those corresponding to the lattice of
Prop.

The SCC itself is traversed in its reverse post-order. For each node ℓ in the
SCC we traverse the outgoing edges (ℓ, ℓ′) and use the transferred version
of the property at ℓ to see if it would contribute to ℓ′. If so, the transferred
property of ℓ is added to the property for ℓ′ with the least-upper-bound
operator.

After the main loop, the final loop uses the transfer function one more time
to calculate the property just after the effect of each control-flow graph node.

Filtering the Control-flow Graph

For every data-flow property, the control-flow nodes have an associated trans-
fer function. Most nodes in the graphs have the identity transfer function,
especially entry and exit nodes. Before the solving algorithm runs, we tra-
verse the graph once to reduce it to only the nodes that actually contribute
to the solution. This is especially cheaper when we can remove nodes from a
cycle in the graph. Values computed for the previous control-flow graph are
propagated to those nodes which have an identity transfer function at the end
of the solving phase.
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2.6 Case Study of GreenMarl

We evaluate the expressiveness and conciseness of FlowSpec with a number
of case studies. So far we have presented our example analyses on a simple
imperative language While (F. Nielson, H. R. Nielson and Hankin 2005, pp. 3–
4). In our first case studies we expand this toy imperative language to the full
language of GreenMarl (Hong, Chafi et al. 2012), a domain specific language for
graph processing. First we introduce the domain concepts and the GreenMarl
language.

2.6.1 The Domain of Graph Analysis

In principle any relational data can be considered a graph, although binary
relations are easiest to map onto nodes and edges of a graph. For higher arity
relations one may employ a property graph representation, where nodes and
edges can be labeled with extra information. The benefit of considering data
as a graph is that standard graph algorithms can be applied to extract useful
information from the data.

Large datasets from the big data world can be seen and processed as property
graphs. But this requires high-performance processing, to handle the large
amount of data within a reasonable amount of time. Here the issues that crop
up is that a straight-forward implementation of a classic graph algorithm in
a general purpose programming language usually is not able to fully exploit
modern hardware for computation on large data. Both multi-core processor
parallelism and multi-machine parallelism that is usually used for larger
data processing requires that algorithms are mixed with bookkeeping and
interoperation code, or the algorithm has to be manipulated to fit a framework.

2.6.2 An Introduction to GreenMarl

GreenMarl is a domain-specific language for efficient graph analysis (Hong,
Chafi et al. 2012). To support its efficiency goal it provides domain-specific and
non-domain specific language features so the user can expose opportunities
of data-parallelism to the compiler. The style of the language is imperative so
graph analysis algorithms can be written in their natural form using graph
specific features and imperative loops. The compiler then applies static analysis
and outputs highly optimised code for the specified graph analysis.

GreenMarl operates on property graphs, by accepting graphs, node-properties
and edge-properties as inputs to its programs, as well as primitive data such
as integers, strings and floating point numbers and collections such lists, sets
and maps. While the input graph cannot be mutated in GreenMarl, properties
can, and new properties can be created on the graph.

The graph can be iterated over using domain-specific ranges, such as the
nodes or edges of the graph, or the neighbours of a node. It can also be queried
for neighbourhood information. Besides a standard for loop over such ranges,
the language provides the parallel foreach loop, and depth- and breadth-first
search traversals over graph ranges.
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1 procedure ccOne(g: graph;
2 cc: nodeProperty<double>) : bool {
3 if(g.numNodes() == 0) { // corner case empty
4 return true;
5 }
6
7 // Kosaraju (simplified)
8 nodeProperty<bool> checked;
9 g.checked = false;

10 node t = g.pickRandom();
11 inDFS(n: g.nodes from t) {
12 n.checked = true;
13 }
14 if(any(v: g.nodes) {!v.checked}) {
15 return false; // not strongly connected
16 }
17 g.checked = false;
18 inDFS(n: g^.nodes from t) {
19 n.checked = true;
20 }
21 if(any(v: g.nodes) {!v.checked}) {
22 return false; // not strongly connected
23 }
24
25 // Closeness Centrality
26 foreach(n: g.nodes) {
27 long levelSum = 0;
28 inBFS(v: g.nodes from n) {
29 levelSum += currentBFSLevel();
30 }
31 n.cc = 1.0 / (double) levelSum;
32 }
33 return true;
34 }

x Listing 2.17 Closeness Centrality (Unit Length) – Simplified

2.6.3 An Example GreenMarl Program

Consider the GreenMarl program in Listing 2.17. This program computes
the Closeness Centrality (Bavelas 1950) measure on a graph, assuming all edges
are the same length. Closeness Centrality of a node in a graph is the reciprocal
(line 31) of the sum of the shortest paths to every other node in the graph. For
unit length edges this can be found by using breadth-first search (lines 28-30)
to visit all nodes, using the ‘level’ of the breadth-first search as the shortest
path length. Before the centrality measure is computed, a simplified version
of Kosaraju’s algorithm for strongly connected components (Kosaraju 1978) is
used to check that the input graph is strongly connected. This check initialises
a boolean flag for each node. Then using that flag it checks that every node can
be reached from a randomly picked node using a depth-first search. The flag
is reset and used again, but now the depth-first search is done on the reverse
graph.
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Within parallel regions, such as the foreach loop and the breadth-first search,
the operations are statically checked not to contain data races. The add-and-
assign operator is called a reduce-assignment and is explicitly safe to perform
in parallel. The language does require that no other writes or reductions with
different operators are done within the same parallel section (in this case the
breadth-first search).

Next to reduce-assignments, there are reduction expressions. In the example
program these are used in the strongly connected check, the any expression
used in the if conditions is a parallel combinator of boolean values.

2.6.4 The Current GreenMarl Compiler

The current implementation of GreenMarl already uses the Spoofax language
workbench. The GreenMarl compiler uses SDF3 for its grammar definition,
and the older NaBL name binding and TS type system languages for its static
semantics implementation. The compiler uses the Stratego transformation
language to analyse, optimise and generate code.

The current implementation of optimisations often have the enabling analysis
embedded in that code. This makes it hard to find out what analysis is
necessary, whether some analysis can be reused by other optimisations, and
whether the optimisation and analysis are correct. In our search for analyses
and optimisations that benefit most from FlowSpec, we have found dead
code elimination, constant propagation and loop unswitching1. Constant
propagation is not implemented in the GreenMarl compiler yet because of time
constraints on the compiler development team.

2.6.5 Control-Flow Graph

The whole of GreenMarl requires 77 control-flow rules. The rules span 165

lines of code, including comments and empty lines. Listing 2.18 shows a
sample of the control-flow graph code. The full list of rules can be found in
Appendix A.2.1.

By comparison, back in Listing 2.5 on page 29 we saw 10 control-flow rules
for the While language, which took 18 lines of code (again including empty
lines). This makes sense, given that on average most language structures have
very simple control-flow expressed on a single line, followed by a blank line
for readability.

In GreenMarl expressions are not desugared to binary and unary operations
that share the same abstract syntax. We chose not to do this desugaring
ourselves, which would lead to changes throughout the rest of the compiler.
However, if such a change were made, 15 control-flow rules would be reduced
to two, and expression related analyses would also shrink in size.

1Loop unswitching is an optimisation that pulls a conditional program fragment out of a
loop when the condition is loop-independent. After the optimisation the conditional wraps two
modified versions of the loop, one to be executed if the condition is true, the other if the condition
is false.
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control-flow rules

Block(statements) = entry -> statements -> exit
DeferAssign(lhs, rhs, _) = entry -> rhs -> lhs -> exit
InReverse(filter, statement) = entry -> filter -> statement -> exit
InPost(filter, statement) = entry -> filter -> statement -> exit

x Listing 2.18 A sample of the control flow graph rules for Green-Marl

property rules

live(VarAssign(n) -> next) = live(next) \ { Var{n} }
live(PropAssign(_,p) -> next) = live(next) \ { Prop{p} }
live(IterBounds(n, _, _) -> next) = live(next) \ { Var{n} }
live(XFSIterBounds(n, _, _) -> next) = live(next) \ { Var{n} }
live(PropRef(_,p) -> next) = live(next) \/ { Prop{p} }
live(VarRef(n) -> next) = live(next) \/ { Var{n} }
live(_ -> next) = live(next)

x Listing 2.19 Live variables analysis for Green-Marl

2.6.6 Live Variables

Live variables analysis can be used to perform dead code elimination in
the GreenMarl compiler in a more principled way. Currently dead code is
discovered in an ad-hoc manner where only variables that are completely
unused are removed. These variables are discovered by performing multiple
tree traversals over the abstract syntax of a procedure, one to collect all local
variables, and then one per variable to check that the variable is not referenced.

The FlowSpec implementation of live variables analysis for GreenMarl in
Listing 2.19 is the full analysis. The analysis tracks variables and property
variables. A VarAssign is a variable reference on the left-hand side of an
assignment.

Note that the control-flow rules for GreenMarl grew to 77 rules, compared
to the 10 of While, but the rules for live variables analysis only grew from 3

rules to 7 rules.

2.6.7 Constant Propagation

The definition of constant propagation follows the approach from Section 2.3.10.
The full analysis implementation is available in Appendix A.2.6. Our imple-
mentation is 21 rules, each of which takes up 4 lines of code and 1 blank
line for readability. Although the implementation is adequate, we find the
repetition of similar match clauses less concise than ideal. This is an area where
we believe we can still improve on the design of FlowSpec.

2.6.8 Reaching Definitions

Reaching definitions analysis can be used for many applications where some
form of data dependence is required. In this case we define this analysis for
GreenMarl for the use case of loop unswitching (Allen and Cocke 1972). This
optimisation pulls an if statement out of a loop when the condition of the
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properties
reaching: MaySet(term * Option(index))

property rules
reaching(prev -> this@Decl(n, _, InArg())) =

{ (n, Some(indexOf(this))) } \/ reaching(prev)

reaching(prev -> this@Decl(n, _, OutArg())) =
{ (n, Some(indexOf(this))) } \/ reaching(prev)

reaching(prev -> this@Decl(n, _, Local())) = { (n, None()) } \/ reaching(prev)

reaching(prev -> this@VarAssign(n)) =
{ (n, Some(indexOf(this))) } \/ { (m, l) | (m, l) <- reaching(prev), m != n }

reaching(prev -> this@PropAssign(_,p)) =
{ (p, Some(indexOf(this))) } \/ { (m, l) | (m, l) <- reaching(prev), m != p }

reaching(prev -> this@IterBounds(n, _, _)) =
{ (n, Some(indexOf(this))) } \/ { (m, l) | (m, l) <- reaching(prev), m != n }

reaching(prev -> this@XFSIterBounds(n, _, _)) =
{ (n, Some(indexOf(this))) } \/ { (m, l) | (m, l) <- reaching(prev), m != n }

// note that we model output effects like printing as writing to an artificial
variable, which allows reasoning about output dependences
reaching(prev -> this@Print(_,_)) =

{ (Print(), Some(indexOf(this))) }
\/ { (m, l) | (m, l) <- reaching(prev), m != Print() }

reaching(prev -> _) = reaching(prev)

x Listing 2.20 Reaching definitions analysis for Green-Marl

if statement does not depend on the loop, something that can be discovered
with reaching definitions analysis. By interchanging the if statement and loop,
the loop does need to be duplicated. One version of the loop for when the if
condition is true, and one for when the if condition is false.

This saves the overhead of conditional branching inside the loop, and enables
the recognition of other optimisation patterns for the loop. For GreenMarl
a particular pattern, that is important when the program is compiled to a
distributed setting, is the transfer of data from every node to every neighbour
node. This pattern is a loop over all nodes in the graph, and within it only a
loop over all neighbours of the node. Therefore if the inner loop is nested in
an if statement, loop unswitching can help.

In Listing 2.20 we show the rules of an enhanced Reaching Definitions
analysis that explicitly tracks uninitialised variables too. This enhanced analysis
would be three rules in an extended version of While with variable declaration.
For GreenMarl we have 9 rules, one of which tracks the writing to an output
channel instead of a variable to keep track of data dependencies induced by
the effect of printing messages.
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2.6.9 Definite Assignment

We can use definite assignment analysis in GreenMarl for the code generation
task of initialisation. When a variable is defined, it is not necessarily initialised.
This is particularly of interest for variables that have a collection type, such
as a set. Within GreenMarl the semantics is that a defined variable of type set
holds an empty set. However, if the variable is later definitely assigned a set,
the variable does not need to be initialised.

We can use the results of reaching definitions analysis for this definite
assignment analysis. The reaching definitions analysis we defined previously
tracks variables from definition, marking these as uninitialised. Wherever a
(n, None()) pair is in the set, n is not definitely assigned there.

2.6.10 Available and Very Busy Expressions

Available expressions and very busy expressions are very similar in definition,
as we observed previously. We present available expressions analysis for
GreenMarl in Listing 2.21. The definition of the analysis is not particularly
short, since all expressions have distinct abstract syntax that needs to be
handled in a separate rule. Compared to the definition for While, which
needed only 3 rules, this is a rather steep increase to 24 rules. However, as
we have noted before, this is due to the shape of the AST that the GreenMarl
compiler works with, which was outside of our control.

2.6.11 Performance Measurement

Although we do not have analyses to compare against, we can measure the cur-
rent performance of the analyses we presented on typical GreenMarl. FlowSpec
was designed to be a concise, executable specification language, where we would
like the execution to be of practical use. Therefore we are not after best-in-class
performance, but FlowSpec should have a reasonable performance for typical
programs.

Setup

Our test machine has a 2.8 GHz Intel Core i7 processor, with 16 GB 1600 MHz
DDR3 RAM. It runs MacOS 10.14.2. The Java version is 1.8.0_152-b16, run on
the HotSpot VM 25.152-b16. We use JMH, the OpenJDK benchmark harness
library, version 1.21. Each benchmark is run with JVM arguments -Xms512m
-Xmx2g -Xss16m, meaning the initial JVM heap size is 512 MiB, the maximum
JVM heap size is 2 GiB and the JVM thread stack size is 16 MiB.

We run 5 warmup iterations, 10 seconds each, after which we run 5 measure-
ment iterations. The benchmark sets up all required dependencies beforehand.

Inputs

We gathered three typical size GreenMarl programs: Closeness Centrality2,
Closeness Centrality with edge weights, and Betweenness Centrality3. The
characteristics of these inputs are in Table 2.1, where lines of code (LOC) are

2as previously shown in Listing 2.17 on page 46

3Gathered from (Oracle Corporation 2015b)
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properties
available: MustSet(term)
external refs: Set(name)

property rules
available(prev -> _) = available(prev)

available(prev -> VarAssign(n)) =
{ expr |

expr <- available(prev),
!(Var{n} in refs(expr)) }

available(prev -> PropAssign(_,p)) =
{ expr |

expr <- available(prev),
!(Prop{p} in refs(expr)) }

available(prev -> this@IterBounds(n, _, _)) =
{ expr |

expr <- available(prev),
!(Var{n} in refs(expr)) }

available(prev -> this@XFSIterBounds(n, _, _)) =
{ expr |

expr <- available(prev),
!(Var{n} in refs(expr)) }

available(prev -> this@Abs(_)) = available(prev) \/ { this }
// Eliding similar lines for UMin, Mul, Div, Mod, Add, Sub, Not,
// Or, Eq, Gt, Lt, Geq, Leq, Neq, Cast, TerIf, FuncCall, ProcCall

x Listing 2.21 Available expressions analysis for Green-Marl

Input name LOC Bytes of input

CC 22 1892

BC 17 2689

CC weighted 41 6963

x Table 2.1 Benchmark inputs and their characteristics.

measured without blank lines and comments, and the bytes of input are in the
intermediate representation on disk from which they are read for input to the
benchmarks.

Results

We present the measurement results in Table 2.2, where each number is the
arithmetic mean of the five measurements for that benchmark. Given the low
analysis time for these typical size inputs, we are confident that FlowSpec analy-
ses can be effectively used within the GreenMarl compiler. In Section 2.7.4 we
mention some more optimisation options we have to improve the performance
of FlowSpec even further.
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Input name Live Variables Reaching Definitions

CC 0.9 1.4
BC 1.3 2.8
CC weighted 2.7 10.7

x Table 2.2 Analysis time in milliseconds for implementations of Live Variable
and Reaching Definitions in FlowSpec on typical GreenMarl programs.

2.7 Case Study of Stratego

We evaluate the expressiveness and conciseness of FlowSpec with a number
of case studies. So far we have only presented example analyses for typical
imperative programming languages. In this section we present a case study of
an analysis written in FlowSpec for a programming language with a different
paradigm: the Stratego (Bravenboer, Kalleberg et al. 2008) term rewriting lan-
guage. We show how we specified a reaching definitions analysis in FlowSpec
and compare it to the existing implementation of reaching definitions in the
Stratego compiler, which is itself written in Stratego. We compare not only the
implementation from a source code perspective but also give a performance
comparison between the FlowSpec implementation and the implementation in
Stratego.

First we introduce the domain concepts and the Stratego language.

2.7.1 Term Rewriting and Stratego

Stratego is a language for program transformation. The language has features
for defining rewrite rules, and strategies for the application of those rewrite rules.
Given an Abstract Syntax Tree that presents a program, a Stratego program
can transform terms from the tree with rewrite rules and apply them in the
right places in the right order with strategies.

Any rule or strategy can fail to apply. Special strategy combinators allow
recovery from failure, which looks similar to an if-else but based on failure or
success instead of a boolean value. Rewrite rules can be expressed as strategies,
and in fact the Stratego compiler desugars all features down to a core language
that consists only of strategies.

Stratego Core. Stratego core consists of a list of strategy definitions. Each
strategy definition has zero or more strategy arguments (functions, making the
strategy higher-order), zero or more term arguments (data), and an implicit
argument: the current term. The body of a strategy definition is a strategy
expression, which can consist of:

1. fail, the primitive strategy that fails
2. id, the primitive strategy that succeeds and does nothing to the current term
3. pattern-match, matches a pattern against the current term, possibly failing

or binding variables when it succeeds
4. pattern-build, replaces the current term with another term, possibly failing

when using an unbound variable
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control-flow rules
root SDefT(_, sargs, targs, body) =

start -> sargs -> targs
-> body -> end

node VarDec(_, _)

Let(defs, body) =
entry -> defs -> body -> exit

SDefT(_, sargs, targs, body) =
entry -> exit,
entry -> sargs -> targs

-> body -> exit

CallT(_, sargs, targs) =
entry -> targs -> this -> exit,
this -> sargs -> exit

node Fail()
node Id()
node Match(_)
node Build(_)

Scope(_, body) =
entry -> this -> body -> exit

Seq(first, second) =
entry -> first -> second -> exit

GuardedLChoice(c, t, e) =
entry -> c -> t -> exit,
entry -> e -> exit

Some(s) =
entry -> this -> exit,

this -> s -> exit

One(s) =
entry -> this -> exit,

this -> s -> exit

All(s) =
entry -> this -> exit,

this -> s -> exit

x Listing 2.22 Most of the control flow graph rules for Stratego

5. scope, defines a scope with a list of fresh (unbound) variables
6. sequence, apply one strategy expression after the other
7. guarded choice, the if-then-else lookalike based on failure instead of boolean

values
8. one, some, all, three language constructs that take a strategy argument and

apply that strategy on one, some or all of the children of the current term.
9. strategy call, to call another named strategy

10. let, to define local strategies

2.7.2 Control-Flow

With the list of constructs, we are able to define the control-flow of Stratego
core, as seen in Listing 2.22.

Note how the guarded choice rule specifies two paths, one for the condition
and then branch, one for the else branch without the condition. This is some-
thing particular to Stratego, where variable bindings from the condition are
backtracked when the condition fails at some point.

All call-like constructs have control-flow that optionally goes into the strategy
arguments. This models the uncertainty of whether those strategy expressions
are executed or not.

2.7.3 Reaching Definitions

Reaching definitions is used in a number of places in the current Stratego
compiler, which is written in Stratego. Whether a variable is guaranteed to be
bound or unbound at some point in a Stratego program is valuable to given
errors messages (e.g. on build a pattern with an unbound variable) and to
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properties

reachingDefinitions:
MaySet(name * Option(position))

property rules

reachingDefinitions(_.start) = {}

reachingDefinitions(prev -> v@VarDec(n, _)) =
reachingDefinitions(prev)
\/ {(Var{n}, Some(position(v)))}

reachingDefinitions(prev -> Scope(names, _)) =
reachingDefinitions(prev)
\/ { (Var{n}, None()) |

n <- Set.fromList(names) }

reachingDefinitions(prev -> m@Match(t)) =
{ (n, p) |

(n, p) <- rdprev,
!(n in pv && p == None()) }

\/ { (nm, Some(position(m))) |
nm <- pv,
(nm, None()) in rdprev }

where rdprev = reachingDefinitions(prev)
pv = patternVars(t)

x Listing 2.23 Reaching definitions analysis for Stratego

generate efficient code (e.g. elide a check and variable binding code when
pattern matching against an always bound variable).

Our reaching definitions analysis for Stratego, written in FlowSpec is given in
Listing 2.23. We start without bindings, add reaching definitions for arguments
to strategies, add uninitialised variables for scopes, and replace uninitialised
variables with their initialisation when they are first matched.

For comparison, the original analysis consists of 232 lines of Stratego code
(provided in Appendix A.3) that implement reaching definitions analysis
under the name bound-unbound-vars in the current Stratego compiler. Our
implementation in FlowSpec is only 19 lines.

The Stratego implementation uses a feature called dynamic rules (Braven-
boer, van Dam et al. 2006) to implement both the data-flow analysis and specify
the name and scope rules for Stratego in an ad-hoc fashion. Other analyses in
the Stratego compiler repeat this name and scope structure in a similar way.
Notably, this code analyses a subset of Stratego but slightly more than Stratego
core. This is most likely a legacy code issue. Currently this analysis is called
within the compiler at a point where the AST has been reduced to Stratego
core already.

2.7.4 Performance Comparison

Since we have a Stratego implementation and FlowSpec implementation of the
same analysis, we can do a performance comparison.
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Input name LOC Strategy definitions Bytes of input

incremental 105 1 11577

libspoofax 1733 278 168539

libstratego 6071 1891 1169465

libstrc 9841 2690 2341797

x Table 2.3 Benchmark inputs and their characteristics.

Setup

Our test machine has a 2.8 GHz Intel Core i7 processor, with 16 GB 1600 MHz
DDR3 RAM. It runs MacOS 10.14.2. The Java version is 1.8.0_152-b16, run on
the HotSpot VM 25.152-b16. We use JMH, the OpenJDK benchmark harness
library, version 1.21. Each benchmark is run with JVM arguments -Xms512m
-Xmx2g -Xss16m, meaning the initial JVM heap size is 512 MiB, the maximum
JVM heap size is 2 GiB and the JVM thread stack size is 16 MiB.

We run 5 warmup iterations, 10 seconds each, after which we run 5 measure-
ment iterations. The benchmark sets up all required dependencies beforehand.
The actual measured code is the Stratego strategy in the Stratego case and the
FlowSpec analysis in the FlowSpec case.

Inputs

We gathered input program of different size, from the typical size for the
incremental Stratego compiler (a single strategy), up to the largest Stratego
library we know of. The characteristics of these inputs are in Table 2.3, where
lines of code (LOC) are measured without blank lines and comments, and the
bytes of input are in the intermediate representation on disk from which they
are read for input to the benchmarks.

Results

We present the benchmark results in Table 2.4, where each number is the
arithmetic mean of the five measurements for that benchmark.

FlowSpec has reasonable execution times for typical workloads. We do see
the execution time grow rather quickly of very large workloads. We see that
from the libspoofax input to the libstratego input is a 7x growth in raw bytes
of input, the Stratego implementation of the analysis spends 8x the time on
that input, but the FlowSpec implementation spends 26x milliseconds.

We are aware of some of the causes for this behaviour. FlowSpec builds
up and saves all control-flow graphs to save these as part of the analysis
results, as well as the data-flow analysis information. In contrast, the Stratego
implementation is manually written in such a way that the analysis information
is used and forgotten as soon as possible. FlowSpec also currently runs an
AST interpreter for the data-flow rules, which takes a majority of time. The
Stratego implementation is compiled entirely.

Correctness. We compared the outcomes of the two analyses to each other.
The Stratego implementation immediately transforms the AST by annotating
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Input name FlowSpec Stratego

incremental 6.65 0.27

libspoofax 148.58 4.49

libstratego 1829.44 33.27

libstrc 6322.17 73.39

x Table 2.4 Analysis time in milliseconds for our implementation in FlowSpec
and the optimised Stratego implementation in the current Stratego com-
piler.

each variable use with its estimated state: bound, unbound, or maybe bound.
Once the FlowSpec analysis is finished, the code to add such annotations based
on the FlowSpec analysis is trivial (just 23 lines of Stratego code).

Threats to Validity

Although this is a small benchmark, more for the sake of curiosity than
validation, we still address the threats to validity of the measurements.

External Validity. A threat to the generalisability of these measurements is
how we compared only a single analysis (Reaching Definitions) with a single
language (Stratego). In fact, intra-procedural analysis of Stratego gives rise to
acyclic control-flow graphs. This is not at all representative of typical control-
flow graphs. However, this was the analysis and language that were easily
available for comparison against an older implementation.

Internal Validity. The comparison we make here is that of end-goal usage, not
exactly the same analysis. The Stratego analysis is both analysis and trans-
formation, combined by hand. This combination is a specialisation that does
well in performance, although we argue that it is not good for maintainability.
On the other hand, FlowSpec computes and returns a control-flow graph,
and computes and returns all Reaching Definitions information for the entire
program. This is more work, more information that can be used for multiple
purposes. And yet the result is not the transformed program.

Construct Validity. Finally, we measure performance on the JVM and need
to consider JIT compilation and garbage collection. Thankfully the JMH
framework takes care of warmup for the JIT and garbage collection between
iterations. We could not eliminate background noise entirely, but all measure-
ment iterations looked to be close to each other. The biggest open question is
that of the three phases benchmarked separately which do not sum up to the
whole benchmark.

2.8 Related Work

We will shortly discuss the history of monotone frameworks which underlies
our work, and some other systems and formalisms for implementing data-flow
analysis. Some of the aspects we discuss are summarised in Table 2.5.
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System Scope Flow-
Sensitive

Lattices Boilerplate Incremental

FlowSpec Procedure Yes Arbitrary Very low No
JastAdd Program Yes Arbitrary* High Yes
Silver Program Yes Arbitrary Very low No
Aster Program Yes Arbitrary Low No
Stratego Program Yes Arbitrary Medium No
Kiama Program Yes Arbitrary Medium No
Doop Program No May/Must High No
Flix Program Yes Arbitrary Low No
MPS-DF Program Yes Arbitrary Low No
IncA Program Yes Arbitrary Low Yes
Rascal Procedure Yes Arbitrary Medium No
CAnDL Procedure Yes N/A Low No

* Complex lattices may need to be defined in Java

x Table 2.5 Related work summary table.

2.8.1 Monotone Frameworks

Monotone data-flow analysis frameworks (Kam and Ullman 1977) were first
introduced as a generalisation over Killdall’s lattice theoretic approach to data-
flow analysis (Kildall 1973). By replacing the distributivity requirement with a
monotonicity requirement for the transfer function, Kam and Ullman found a
way to describe more flow problems in a framework with a clear solution by
maximal fixed point. This maximal fixed point can be iteratively computed
with a simple worklist algorithm. As mentioned in Section 2.2, FlowSpec is
based on this analysis framework.

2.8.2 Attribute Grammars

JastAdd. The JastAdd system (Ekman and Görel Hedin 2007b) supports at-
tribute grammars (Knuth 1968) extended with a number of special attributes
which allows a declarative intra-procedural control- and data-flow analysis
specification (Söderberg, Ekman et al. 2013). In particular, these are reference
attributes (Görel Hedin 2000) for control-flow graph (CFG) edges, higher-order
attributes (Vogt, Swierstra and Kuiper 1989) for virtual CFG nodes, used for
entry/exit of methods, circular attributes (Magnusson and Görel Hedin 2007)
for fixed points of data-flow equations, and collection attributes (Magnusson,
Ekman and Gorel Hedin 2007) e.g. for the CFG where there are multiple
successors.

Note that each feature can be used for data-flow analysis but is not specific-
ally designed for it. Therefore JastAdd is a much more general computation
system that has much more expressive power than FlowSpec. The downside of
this generality, versus the domain-specific nature of FlowSpec, is the verbosity.
Whereas in FlowSpec our specifications are small and the language provides
domain terms for each of the features, JastAdd requires an encoding in the
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different attributes. It is also not clear to us whether higher-order attributes are
enough to encode arbitrary lattices. If not, JastAdd’s Java integration would be
required to implement the lattice.

Silver. Silver (Van Wyk et al. 2010) is another attribute grammar system and
specification language that supports similar features to the JastAdd system.
However, for control- and data-flow analysis, it provides dedicated syntax
which translates to a control-flow graph and temporal logic formulae (CTL-FV)
that are offloaded to a model checker (NuSMW). Temporal logic can express
reasoning in terms of time, which can be used to express data-flow properties
in a declarative manner.

Temporal logic is a very terse notation for data-flow specification, and is
subjectively not very easy to read. Our language design for FlowSpec is
a very different approach which is not rooted in logic formulae. Instead
we use domain names for keywords and provide a declarative approach to
specification which borrows from functional programming.

The Silver publication did not report on the performance of their data-flow
analysis approach. Model checkers have a sweet spot where their heuristics
perform well, but ultimately cannot cover the entire NP-Hard problem space.
As such, it may suddenly perform poorly for the problems that Silver generates
for it based on the translation Silver uses, the temporal logic formula in the
Silver specification, or the particular input program.

Aster. The Stratego strategic programming language was extended with
attribute grammars in Aster (Kats, Sloane and E. Visser 2009). Aster allows for
attribute decorators that allow the user to program different attribute grammar
extensions, which allows it to support declarative flow analysis similar to
JastAdd.

Stratego. The Stratego programming language was also directly applied to
data-flow analysis by leveraging its dynamic rewrite rules (Bravenboer, van
Dam et al. 2006). In this paper the authors apply a combination of rewrite
rules and dynamic rules for dynamic propagation of information. Dynamic
rules can use either union or intersection to follow control-flow that splits and
merges. At the splitting point the dynamic rule is copied to both branches.
In all other places dynamic rules are mutated, which is not an issue as the
rewrite based on the dynamic information is done immediately. Fixed point
calculation can also be done with a similar choice of union or intersection.

In FlowSpec we treat data-flow analysis as a separate concern. In contrast an
analysis in Stratego is usually interspersed in the transformation code, which
makes the code more difficult to read and understand. This code style also
brings frustrations when an analysis already interleaved in a transformation
turns out to be more generally useful in other transformations. Extracting and
reusing such an analysis is not well supported by dynamic rules. FlowSpec is
built around the idea of simple, separate specifications of data-flow analysis.
The analysis results can be used to inform an arbitrary amount of transforma-
tions.

Kiama. Kiama (Sloane, Roberts and Hamey 2014) is a language processing
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library in Scala, based on attribute grammars and strategic programming. The
interesting property Kiama has over Aster is the provisions for updating analy-
ses after transformation, a concern we currently do not address in FlowSpec.
The tree transformations done with strategic programming can invalidate the
values of certain attributes that are dependent on the parents of a tree node
(e.g. inherited attributes), or some other context. To easily combine attribute
grammars with strategic programming, Kiama provides tree-indexed attribute
families. The root of the particular tree is used for indexing whenever an
attribute is context-dependent.

2.8.3 Relational Programming

Doop. The Doop framework (Bravenboer and Smaragdakis 2009) uses a Data-
log dialect for a declarative specification of static analyses such as context-
sensitive pointer analysis. In a recent tutorial (Smaragdakis and Balatsouras
2015, p. 46), Smaragdakis and Balatsouras explain different techniques specific
to pointer analysis with Datalog examples. These mostly focus on whole-
program, flow-insensitive may-analyses. Flow-sensitive analyses and must-
analyses are significantly more complex and harder to ensure soundness of.

FlowSpec focusses on a complementary set of data-flow analysis. Instead
of whole-program (inter-procedural) flow-insensitive may-analyses, FlowSpec
provides support for local (intra-procedural) flow-sensitive analyses with arbit-
rary lattices.

Flix. The Flix programming language (Madsen, Yee and Lhoták 2016) is a
new contender that extends Datalog to a language with user-defined lattices,
and monotonic transfer and filter functions on these lattices. These allow
Flix to express data-flow analysis with infinite value domains while keeping
guaranteed termination with a unique minimal model; under the assumption
that the user-defined lattices and functions are defined correctly.

User-defined types and lattices in Flix and FlowSpec are very similar.
FlowSpec benefits from the larger Spoofax ecosystem, to develop features
such as the (experimental) automatic name abstraction. One may be able to
provide name and scope information along with an input program in Flix, and
use explicit filtering, but to our knowledge there is no way to automatically
filter names that go out of scope.

2.8.4 Other Analysis Approaches

MPS-DF. The MPS language workbench4 has MPS-DF, an extensible frame-
work for definition of data-flow analyses (Szabó, Alperovich et al. 2016). MPS-
DF has support for building data-flow graphs (control-flow graphs with read
and write primitives), and a syntax for writing transfer and confluence op-
erators. These operators form the ingredients that allows MPS-DF to apply
a classical monotone frameworks solution. The analysis can be done in an
intra-procedural fashion by correctly implementing the operators to abstract
over the possible effects of a procedure call, or inter-procedurally by inlining

4https://www.jetbrains.com/mps/
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method calls. To support this variability, two different data-flow graph builders
need to be implemented for a procedure call element in the AST.

IncA. Another MPS related language is IncA (Szabó, Erdweg and Völter
2016), a DSL for incremental program analysis. This DSL is built upon the
InQuery engine which supports incremental computations using first order
logic extended with the least fixed point operator. The language originally
only worked for analyses that can be modelled with relations (i.e. may- and
must-analysis). It did not support the generation of data that is not directly
from the program, such as building intervals in an interval analysis. This
was remediated by extending the incremental algorithm for lattice based
values (Szabó, Völter and Erdweg 2017). The language design of the IncA
DSL evokes a procedural style, whereas FlowSpec uses a declarative style with
domain terms.

FlowSpec makes a different trade-off than IncA. We do not support incre-
mental analysis, thereby also avoiding the prohibitive memory overhead of
IncA, which the authors mention as a concern for future work. The benefit
of IncA is that data-flow analysis can be used for rapid feedback to a user in
an IDE setting. This fits well with inter-procedural analysis. With FlowSpec
our focus has been on analyses that inform optimisation, which are done in a
compiler backend.

Rascal. Rascal (Klint, van der Storm and Vinju 2009) provides a facility for
control-flow graph construction with DCFlow (Hills 2014), a domain-specific
language. It simplifies the definition of simple control-flow constructions,
but does not support abrupt termination such as exceptions. To implement
these constructs the user needs to fall back on the DCFlow library in Rascal.
Similarly, the actual implementation of data-flow algorithms on top of a CFG
is still done in the Rascal language, without a special library or framework for
the use-case.

FlowSpec support both control-flow graph construction and data-flow analy-
sis within the domain-specific language. Rascal, as a general-purpose language,
can support anything, but without extra support for the use case of data-flow
analysis.

CAnDL. The domain specific language CAnDL (Ginsbach, Crawford and
O’Boyle 2018) provides a constraint based approach to compiler analysis for
LLVM. It is specifically designed for the LLVM intermediate representation,
which is in single static assignment (SSA) form. The focus is on programmer
productivity, and in their evaluation the authors show several real world use
cases where analyses were expressed more briefly in CAnDL than in the
original C++ of LLVM or in Polly, a polyhedral optimisation framework.

FlowSpec makes no assumptions on the representation of the program or
intermediate representation it analyses. We provide a language parametric
analysis DSL, where we cannot make assumptions about a representation such
as SSA form. Instead of the specific constraints of CAnDL, we provide property
rules where the user can propagate information of their choosing.
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2.9 Conclusion

We have presented FlowSpec, a declarative specification language for the do-
main of data-flow analysis. We have shown its static semantics, and its dynamic
semantics as a mapping onto monotone frameworks. The implementation of
FlowSpec is integrated into the Spoofax language workbench where it can
access name information to take into account during analyses. We have demon-
strated a number of example specifications in FlowSpec. We have also demon-
strated FlowSpec in a case study of an industrial domain-specific language with
domain-specific analyses and a case study of a term transformation language.

In short, FlowSpec provides domain-specific, integrated support for data-
flow analysis in compilers. With it, we can remove ad-hoc analyses and provide
more maintainable compilers in the future.

Chapter 2 U Language Parametric Control- and Data-Flow Analysis 61





Chapter 3

Incremental Compilers with Internal Build Systems

Abstract. Compilation time is an important factor in the adaptability of a software
project. Fast recompilation enables cheap experimentation with changes to a project, as
those changes can be tested quickly. Separate and incremental compilation has been a
topic of interest for a long time to facilitate fast recompilation.

Despite the benefits of an incremental compiler, such compilers are usually not the
default. This is because incrementalisation requires cross-cutting, complicated, and
error-prone techniques such as dependency tracking, caching, cache invalidation, and
change detection. Especially in compilers for languages with cross-module definitions
and integration, correctly and efficiently implementing an incremental compiler can
be a challenge. Retrofitting incrementality into a compiler is even harder. We address
this problem by developing a compiler design approach that reuses parts of an existing
non-incremental compiler to lower the cost of building an incremental compiler. It also
gives an intuition into compiling difficult-to-incrementalise language features through
staging.

We use the compiler design approach presented in this chapter to develop an
incremental compiler for the Stratego term-rewriting language. This language has
a set of features that at first glance look incompatible with incremental compilation.
Therefore, we treat Stratego as our critical case to demonstrate the approach on. We
show how this approach decomposes the original compiler and has a solution to compile
Stratego incrementally. The key idea on which we build our incremental compiler is to
internally use an incremental build system to wire together the components we extract
from the original compiler.

The resulting compiler is already in use as a replacement of the original whole-
program compiler. We find that the incremental build system inside the compiler is a
crucial component of our approach. This allows a compiler writer to think in multiple
steps of compilation, and combine that into an incremental compiler almost effortlessly.
Normally, separate compilation à la C is facilitated by an external build system, where
the programmer is responsible for managing dependencies between files. We reuse an
existing sound and optimal incremental build system, and integrate its dependency
tracking into the compiler.

The incremental compiler for Stratego is available as an artefact along with this
article. We evaluate it on a large Stratego project to test its performance. The benchmark
replays edits to the Stratego project from version control. These benchmarks are part of
the artefact, packaged as a virtual machine image for easy reproducibility.

Although we demonstrate our design approach on the Stratego programming lan-
guage, we also describe it generally throughout this chapter. Many currently used
programming languages have a compiler that is much slower than necessary. Our
design provides an approach to change this, by reusing an existing compiler and
making it incremental within a reasonable amount of time.

Based on: Jeff Smits, Gabriël Konat and Eelco Visser (2020). ‘Constructing Hybrid Incremental
Compilers for Cross-Module Extensibility with an Internal Build System’. In: The Art, Science, and
Engineering of Programming 4.3, 16. doi: 10.22152/programming-journal.org/2020/4/16

https://doi.org/10.22152/programming-journal.org/2020/4/16


3.1 Introduction

Compilation time of a software project is an important factor in how easily
the project can be changed. When the compilation time is low, it is cheap to
experiment with changes to the project, which can be tested immediately after
recompilation. Therefore, fast recompilation has been a topic of interest for a
long time (Backus and Heising 1964, p. 384).

Already in the early times of FORTRAN (as of FORTRAN II (Backus and
Heising 1964, p. 384)), independent compilation of modules was used to speed
up recompilation. This allowed a change in one module to require only the
recompilation of that module and linking against the previously compiled
other modules of the program. Skipping the compilation of all modules except
the changed one was a significant improvement over compiling everything
again. This did come at the cost of possible link-time issues. To be able to
link the program together, the modules needed to be up-to-date with the data
layout defined in COMMON. This was done manually and only checked by the
programmer.

Mesa introduced separate compilation, which solved this issue by moving the
static checks of cross-module dependencies to compile-time (Geschke, Jr. and
Satterthwaite 1977). When a Mesa module is compiled, the result includes
a symbol file that can be used during the compilation of other modules that
depend on that module. Other languages such as ML and C use interface files
that are written by the programmer. Separate compilation brought back type
correctness for statically typed programs, while preserving fast recompilation
from independent compilation.

To further speed up recompilation, we can save intermediate results during
compilation. If parts of the program do not change, then the intermediate
results of those parts can be reused. The term separate compilation applies to
compilation where intermediate results are saved per file (Geschke, Jr. and
Satterthwaite 1977). For sub-file level tracking of changes and intermediate
results, the term incremental compilation is used (Ryan, Crandall and Medwedeff
1966; Reiss 1984).

Incremental compilation has clear benefits for recompilation speed. However,
to make a compiler incremental, we must split the compilation process into
separate (ideally independent) parts, track dependencies between these parts,
cache previous results, perform cache invalidation, persist caches to disk,
detect changes, and propagate them. Unfortunately, this is far from trivial, as
these techniques are complicated and error-prone, and cross-cut the concerns
of the compiler. Especially in a compiler for a language requiring cross-module
linking and integration, correctly and efficiently implementing an incremental
compiler can be challenging.

In this chapter, we present an approach to the design of incremental com-
pilers that separates the language-specific aspects of a compilation schema
from the language-independent aspects of tracking the impact of a change on
the output of compilation. Our compilation method is a hybrid of separate
and incremental compilation. It is separate compilation in the sense that we
process a changed file in its entirety. However, instead of producing a single
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intermediate representation for a file, we split the intermediate representation
into smaller units (e.g. top-level definitions) and separate summaries for static
analysis. By splitting up the file early, we can then proceed to process each
unit separately. Changing one of the units within a file will only require the
reading and splitting up of that file, after which further processing can proceed
incrementally. We use PIE (Konat, Steindorfer et al. 2018; Konat, Erdweg and
E. Visser 2018) – an efficient, precise, and expressive incremental build system –
to tie together the components of the compiler in order to efficiently propagate
changes through the compiler pipeline. We have developed this approach
to incrementalise the compiler of Stratego (Bravenboer, Kalleberg et al. 2008;
Bravenboer, van Dam et al. 2006), a term rewriting language with open ex-
tensibility features. Our approach allows us to reuse almost all of the existing
compiler while gaining great improvements in recompilation speed. We evalu-
ate the incremental Stratego compiler with a benchmark on the version control
history of a large Stratego project.

In summary, the paper provides the following contributions:

• We present a general design approach for constructing a hybrid separate/
incremental compiler from compiler components and a build system.

• We present an application of the approach in the design and implementation
of a hybrid separate/incremental compiler for the Stratego transforma-
tion language, for which previously only a whole program compiler was
available.

• We evaluate the performance of the Stratego incremental compiler applied
to a version history of the WebDSL code base. While the from-scratch
time of the incremental compiler is longer than the original compiler, the
recompilation time of the incremental compiler is less than 10 % of the
from-scratch time in most cases.

Outline. We proceed as follows. In the next section we discuss the open
extensibility features of the Stratego language, their application to modular lan-
guage definition, and indicate how these features affect separate/incremental
compilation. In Section 3.3, we analyse the interaction between compilers
and build systems in general, and discuss the whole program Stratego com-
piler and a previous attempt at making it incremental. In Section 3.4, we
describe our incremental compilation design approach and its application
to Stratego. In Section 3.5, we compare the performance of the incremental
compiler to the performance of the original, whole-program Stratego compiler,
and demonstrate the effectiveness of our solution for successive compilations.
In Section 3.6, we discuss related work.

3.2 Open Extensibility in Stratego

The goal of the expression problem as formulated by Wadler (Wadler 1998) “is to
define a datatype by cases, where one can add new cases to the datatype and
new functions over the datatype, without recompiling existing code, and while
retaining static type safety (e.g., no casts).” The example used to illustrate
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the expression problem is the modular definition of a language consisting
of a data type for its abstract syntax and operations such as evaluation and
pretty-printing on that data type. The problem illustrates the difference in
capabilities between object-oriented programming, in which data extension is
easy, and functional programming, in which extension with operations is easy.

The Stratego transformation language was designed to support modular
language definition with open extensibility. A module can extend a language
definition with new AST constructors and/or with new operations, as we
illustrate below. Alas, the language design does not count as a solution to
the expression problem since it requires whole program compilation and
the language is dynamically typed. In this chapter, we address the problem
of incrementally compiling Stratego programs in the face of cross-module
extensibility of operations (aka strategies), bringing it closer to a solution of the
expression problem. In this section, we illustrate the use of open extensibility in
Stratego, we discuss the language features that enable that and how they affect
separate/incremental compilation, and we discuss a real world application of
open extensibility in the WebDSL compiler.

An Example. We illustrate Stratego’s extensibility with a fragment from the
TFA example language borrowed from Visser (E. Visser 2005). The language
definition in Figure 3.1 is organised in a matrix where each cell corresponds
to a Stratego module. The columns correspond to language aspects and the
rows define data types or transformations. The modules in the top row define
the abstract syntax of a language aspect: a core language with variables and
function calls, arithmetic expressions, and control-flow constructs1. The mod-
ules in the second row define the desugar transformation. Arithmetic operator
applications are desugared to function applications (taking the AST constructor
as function name, using the pattern f#(ts) that generically deconstructs a term
into its constructor f and child terms ts), for loops are desugared to while
loops with the appropriate initialisation, and if-then statements are desugared
to if-then-else statements. The modules in the third row define the eval trans-
formation using rewrite rules for basic reductions and a strategy to define
evaluation order. (The details are not relevant for the topic of the paper.) The
TFA example described by Visser (E. Visser 2005) provides more (interesting)
language extensions and operations, but Figure 3.1 demonstrates the essential
extensibility features.

The example illustrates how we can orthogonally extend a language defini-
tion with new constructors and/or transformations. We discuss the language
features that enable this extensibility.

Modules. Stratego programs are organised in modules, defined in separate
files. A module can import other modules, making their contents accessible.
Imports are transitive. Modules can define algebraic data type signatures,
rewrite rules, and strategies.

Strategic Rewriting. In Stratego, transformations are defined using term pat-
tern matching (?p) and term pattern instantiation (!p) as basic operations (also

1One can argue with the choice of core language, but that is not the topic of this chapter.
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p ::= b
b ::= begin st end

st ::= var x:t; x:=e;
f (e1,...,en); b

e ::= x f (e1,...,en)
t ::= void

i ::= [0− 9]+
e ::= i e1+e2 e1*e2

e1&e2 e1|e2 . . .
t ::= int

st ::= if e then st else st end
if e then st end
while e do st end
for x := e1 to e2 do st end

module desugar/core

desugar = innermost(Desugar)

Desugar = fail

module desugar/int
imports desugar/core

Desugar = BinOpToCall

BinOpToCall :
f#([e1, e2]) -> |[ f(e1, e2) ]|
where <is-bin-op> f

is-bin-op :
?"Add"
<+ ?"Mul"
// etc.

module desugar/control
imports desugar/core

Desugar =
ForToWhile <+ IfThenToIfElse

ForToWhile :
|[ for x := e1 to e2

do st* end ]| ->
|[ begin

var x : int;
var y : int;
x := e1; y := e2;
while x <= y do

st* x := x + 1;
end

end ]|
where new => y

IfThenToIfElse :
|[ if e then st* end ]| ->
|[ if e then st* else end ]|

module eval/core

eval =
eval-special
<+ all(eval); try(eval-exp)

eval-special =
EvalVar <+ eval-stats
<+ eval-assign
<+ eval-declaration

eval-assign =
|[ x := <eval => e> ]|
; rules(EvalVar.x :

|[ x ]| -> |[ e ]|)

eval-declaration =
?|[ var x : t; ]|
; rules(EvalVar+x :- |[ x ]|)

eval-stats =
Stats({|EvalVar : map(eval)|})

eval-exp = fail

module eval/int
imports eval/core

eval-special = eval-or <+
eval-and

eval-exp =
EvalAdd
<+ EvalMul
// etc.

EvalAdd :
|[ Add(i, j) ]| -> |[ k ]|
where <addS> (i, j) => k

EvalMul :
|[ Mul(i, j) ]| -> |[ k ]|
where <mulS> (i, j) => k

module eval/control
imports eval/core

eval-special =
eval-if <+ eval-while
; eval

eval-if =
|[ if <eval> then <*:id>

else <*:id> end ]|
; EvalIf; eval-stat

eval-while :
st@|[ while e do st* end ]| ->
|[ if e then st* st else end ]|

EvalIf :
|[ if i then st1*

else st2* end ]| ->
|[ begin st1* end ]|
where <not-zero> i

EvalIf :
|[ if 0 then st1*

else st2* end ]| ->
|[ begin st2* end ]|

x Figure 3.1 The TFA language. Columns are modules core, int, and control,
rows are aspects grammar, desugaring, and evaluation.
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known as match and build). For example, a rewrite ?Add(x, y); !Add(y, x)
swaps the subterms of an Add term, by sequentially composing a match and a
build. Pattern matching is a first-class operation. That is, it is not bound to
the use in a pattern matching construct that handles all cases. Thus, a pattern
match fails when it is applied to a term that does not match, and is allowed to
do so. Failure is first class (any transformation may fail) and is handled by the
choice combinator <+. The choice s1 <+ s2 between two transformations first
applies s1 and when that fails applies s2.

In general, Stratego provides composition of transformation strategies from
pattern matching and instantiation using a small set of combinators for control
(including sequential composition and choice) and generic term traversal.

Named Strategies and Rules. A strategy definition f = s names a strategy ex-
pression s and can be invoked as a combinator using its name. For example, the
definition desugar = innermost(Desugar) defines the desugar transformation as
the application of the innermost strategy with the Desugar rule(s). A rewrite
rule f : p1 -> p2 where s is sugar for a strategy f = {x,..: ?p1; where(s);
!p2}, i.e. it rewrites a term matching p1 to an instance of p2 provided that
the condition s succeeds. Using these features, we can define many small
transformation components (rules, strategies) and make multiple different
compositions from these basic components. For example, we can compose
rewrite rules using choice (e.g. EvalAdd <+ EvalMul), to apply multiple rules to
a term.

Open Extensibility. The key to the extension of transformations illustrated in
Figure 3.1 is Stratego’s open extensibility of rules and strategies. A module
may provide several definitions for the same name. And such definitions
may be defined across several modules, independently of each other. For
example, the desugar/core module defines the desugar strategy in terms of
the Desugar strategy. It defines the latter as the fail strategy, which always
fails. Thus, applying the desugar strategy as defined in that module performs
the identity transformation. However, the desugar/int and desugar/control
modules (independently) extend the definition of Desugar. When combining
these modules the definitions of Desugar are combined to

Desugar = fail <+ BinOpToCall <+ ForToWhile <+ IfThenToIfElse

and the desugar strategy normalises a term with respect to those rewrite rules.
This extensibility feature is the core reason that Stratego has a whole program

compiler. All modules of a program are combined in order to gather and
combine all the extensions of each strategy. In addition, there are two more
features that complicate separate/incremental compilation: dynamic rules and
overlays.

Dynamic Rules. Dynamic rules are rewrite rules that are defined dynamically
during a transformation using the rules(...) construct. For example, the
evaluation strategy in Figure 3.1 uses a dynamic rule EvalVar to map variables
to values. Furthermore, a dynamic rule gives rise to a number of derived
strategies for applying and reflecting on the dynamic rule. There are currently
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18 such derived strategies. Only one definition of each of these derived
strategies should be generated per dynamic rule name, even if it is defined in
multiple modules. Therefore, this feature requires global program information.

Overlays. Overlays (which do not appear in the example in Figure 3.1) are
pattern aliases that can be used in both match and build position (E. Visser
1999). The applications of overlays are syntactically indistinguishable from
regular terms. Overlays are greedily expanded; at run-time they are no longer
available by name. A module does not need to import the module that defines
the overlay for it to be available. Therefore the compiler needs to know all
overlay definitions in the entire program to identify all their uses and expand
them, affecting incremental compilation.

Open Extensibility in the WebDSL Compiler. The extensibility features discussed
above are used in practice in compilers for languages used in production. For
example, WebDSL, a domain-specific web programming language (Groenewe-
gen, Hemel et al. 2008; Groenewegen and E. Visser 2013), consists of a number
of sublanguages such as for the definition of data models, querying, computa-
tion, user interface templates, and access control (E. Visser 2007; Groenewegen
and E. Visser 2008). The WebDSL compiler uses the open extensibility of Strat-
ego to define extensions to basic analysis and transformation strategies per
sublanguage. We present some statistics of the WebDSL language definition in
Table 3.1 to show the relevance of the previously identified Stratego features in
a real-world language definition.

The code base of the compiler consists of 399 modules with 2644 distinct
strategies in the source code. Many additional strategies are generated as
helpers of dynamic rules (6678), and constructors of terms (769) are usable
as strategies as well. A total of 10091 strategies are compiled by the stratego
compiler when the entire project is built. Out of those strategies, 857 have
definitions in more than one module, showing how much the cross-modular
extension feature is used.

Ambiguous strategy use sites are numerous within the codebase, 942 calls
to a strategy are initially ambiguous in arity. Overlays are not used very much,
only 19 definitions exist in the codebase and 8 of those are not even used
any more. Most overlays are only used in one module (usually the defining
module), although one is used in 23 modules.

The project uses 371 dynamic rules, most of which (334) have only one
definition. These are most likely used as scoped mutable variables, rather than
proper dynamic rewrite rules. That still leaves 37 dynamic rules with multiple
definitions in different places.

3.3 Compiler Architectures and Build Systems

Compilation of Stratego’s open extensibility requires the integration of defini-
tions from multiple modules, precluding a simple separate compilation model.
In this section, we first recall how in separate compilation (for the C language)
a compiler outsources dependency tracking and computing which files to
recompile to a build system; an idea we build on for our incremental compiler.
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# of modules 399

# of distinct named strategies 10 091

# of congruences 769

# of dynamic rule helper strategies (18 × 371) 6678

# of user-defined strategies (rest) 2644

# of modules in which a named strategy is defined 10 091

1 module 9234

2–10 modules 826

11–20 modules 19

21–30 modules 8

> 31 modules 4

# of possibly ambiguous strategy use sites 942

# of overlay definitions 19

# of modules in which a distinct overlay is used 19

0 modules 8

1 module 9

2 modules 1

23 modules 1

# of distinct dynamic rule names 371

# of contributions per dynamic rule name 371

1 contribution 334

2 contributions 26

3 contributions 5

4 contributions 3

8 contributions 2

10 contributions 1

x Table 3.1 Code metrics of the WebDSL compiler code base.

Then we review the original whole program compilation model for Stratego
and its limited support for separate compilation. We also discuss a previous
attempt at incremental compilation by dynamic linking.

3.3.1 Separate Compilation and Build Systems

Separate compilation allows efficient recompilation of programs consisting of
multiple compilation units. Only the compilation units that are affected by
a change need to be recompiled. Typically, the work of determining which
compilation units to recompile is not done by the compiler, but by an external
build system. This is a nice separation of concerns. The compiler is not
complicated by tracking dependencies and whether target files are up-to-date
and the build system has to know only the external interface of the compiler.

For example, consider the C programming language and the compilation
scenario illustrated in Figure 3.2. C has a separate compiler, which translates a
.c source file and to .o object file. Cross-module static checking is enabled by
means of ‘forward declarations’ of functions (which are typically defined in

70 u Strategic Language Workbench Improvements



cc
       ./program.c

int lib_fun(int);
int main(char** c) {

cc
          ./mylib.c

int lib_fun(int c) {

ld

./program.o

./mylib.o

./program

x Figure 3.2 An example build of a simple C project.

./m.str
imports k
strategies

s1
s1
s2

./k.str
strategies

s2
s3

Main.java

InteropRegistrer.java

s1_0_0.java

s2_0_0.java

s3_0_0.java

reads file
writes file
contributes to

 compiler
s1, s1 (m)

s2 (m)

s2 (k)

s3 (k)

s1_0_0

s2 (m), s2 (k) s2_0_0

s3_0_0

Front-end      Back-end

x Figure 3.3 Whole-program compilation example for Stratego. All modules
are discovered and merged by a single process.

additional header files included during preprocessing), defining the required
interface to be implemented by the other files. Object files are combined into
an executable by a linker. Thus, building a C program involves compiling all
its files and then linking the resulting object files. Most C projects use a build
system such as Make for this process such that only the files that are changed
(or are affected by a change in a header file) need to be recompiled.

While this separation of concerns between compiler and build system is
attractive for the compiler writer, it is less so for the programmer who needs to
make sure the build system configuration accurately reflects the dependencies
in the program often leading to unsound configurations, requiring frequent
expensive from-scratch builds.

3.3.2 Whole-Program Compilation

The simple separate compilation model of C does not apply to Stratego because
strategy definitions across modules need to be integrated. Therefore, Stratego’s
compiler uses a whole program compilation model (Bravenboer, Kalleberg et al.
2008) as illustrated in Figure 3.3. (The original compiler translated Stratego
to C. The current compiler produces Java code. The compiler architecture is
unchanged.) The compiler reads all module files by following imports from
the main file of a Stratego program. After parsing the files, the compiler
builds a single internal model of the program. Strategy names (which can
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desugar(|e) =
CallT(\SVar(n) -> n\, id , id)

desugar(|env) :
Var(e) -> <lookup> (e, env)

⇒
desugar(|e1) =

CallT(\SVar(n) -> n\, id , id)
<+ {e: (Var(e) -> <lookup> (e, e1))}

x Figure 3.4 Integration of strategy definitions with the same name.

be overloaded in addition to have multiple definitions) are disambiguated
by including the arity in the name. Then multiple definitions with the same
name are merged into a single definition. Strategy definitions are merged by
renaming the arguments to be consistent, scoping each strategy body, and
defining the merged body as a choice between the two bodies, as illustrated in
Figure 3.4. The order between definitions from different modules is undefined.
The back-end of the compiler translates the simplified, merged definitions to
Java classes and extracts information such as term constructors, constants, and
strategy names to put into the Main and InteropRegistrer classes.

This process is illustrated by Figure 3.3. Strategies s1 and s3 are only defined
in one module, and each have their corresponding Java class in the compiler
output. Strategy s2 is defined in both modules, and merged by the compiler
into a single Java class.

Limited Separate Compilation Support. While the Stratego compiler is a whole-
program compiler, it has support for separate compilation of libraries. Com-
piled libraries consist of an interface (list of strategies and term constructors),
and the Java classes with the compiled code. However, these libraries are
second-class citizens. A compiled library can only be imported in its en-
tirety since its internal module structure is discarded. Furthermore, separate
compilation is achieved by limiting open extensibility to library boundaries;
an (external) strategy defined in a library can not be redefined or extended.
Dynamic rules defined in a library cannot be extended either.

To recover some of the expected functionality for external strategies, Stratego
provides two special keywords, extend and override, which can be applied
to a definition that is already defined in an imported library. The override
keyword overrides the definition with the local one, while the extend keyword
overrides the definition but can call the original through the proceed keyword.
These modifiers can only be applied to a single definition, i.e. these definitions
cannot be further extended like regular strategy definitions. Calls to proceed
have the same overhead as that of a normal strategy call, thus making this
form of strategy extension more expensive at run-time too.

Thus, separate compilation allows the creation of libraries with reusable
functionality, but without the idiomatic extensibility features of Stratego to
interact with that code.

3.3.3 Independent Compilation with Dynamic Linking

In a case study of the Stratego compiler for the Pluto incremental build system,
Erdweg, Lichter and Weiel (2015) developed a “file-level incremental” compiler
for Stratego. To understand that model, we first discuss the Stratego to Java
compilation scheme.
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desugar(|env): Var(e) -> <lookup> (e, env)

⇓
public class desugar_0_1 extends Strategy {

public static Strategy instance = new desugar_0_1();

public IStrategoTerm invokeDynamic(IStrategoTerm term, Stratego[] sargs,
IStrategoTerm[] targs) {

// ... match Var, bind e to local variable, build pair, bind to current term
...

term = lookup_0_0.instance.invoke(term);
return term;

}

x Figure 3.5 Stratego to Java compilation scheme.

Java Compilation Scheme. Figure 3.5 illustrates the compilation scheme. Each
compiled strategy definition is a class that extends the Strategy abstract class.
This class has invocation methods for a number of different arities with a
default implementation that dispatches to a general method for two arrays
of arguments (the strategy and term arguments). A generated strategy class
extends this abstract class and implements the general method.

Strategy names are translated to the same name with underscores instead of
dashes and followed by their arity separated by underscores. Each class has
a public static field instance where the instance of the strategy is saved. This
field is used to be able to override or extend strategies in compiled libraries.
The overriding or extending strategy is a new class that extends the original
class, overrides the invocation method, and overrides the instance field of the
original class with an instance of itself.

The Main class that the backend generates provides an entry point into a
Stratego program. If a main strategy is defined, it can be called through the
Main class, which sets up the execution context, compute shared constants and
term constructor objects, and execute the program. The shared constants and
term constructor objects are stored in fields of the Main class and referenced by
the other classes.

The InteropRegister registers all compiled strategies in the context object
for interoperability with the Java implementation of the Stratego interpreter.
This hybrid interpreter can load compiled libraries like the Stratego standard
library through these InteropRegisters, and then interpret the main program
as an AST which was only compiled with the compiler frontend.

Dynamic Linking Compilation Scheme. Erdweg, Lichter and Weiel (2015) experi-
mented with a separate compilation model for Stratego by relying on dynamic
linking. To the best of our understanding from inspecting the code, this was
an independent compiler, i.e. it skipped cross-module static analyses. The case
study demonstrates the applicability of the Pluto build system to dependency
tracking and rebuilding within a compiler. However, no speedup is reported
on, nor were the changes merged into the Stratego compiler.

The compilation model is illustrated in Figure 3.6. The compiler produces
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./m.str
imports k
strategies

s1
s1
s2

./k.str
strategies

s2
s3

compiler

InteropRegistrer.java

s2_0_0.java

s3_0_0.java

compiler

InteropRegistrer.java

s1_0_0.java

s2_0_0.java
runtime

s1_0_0

s2_0_0

s3_0_0

reads file
generates
contributes to

x Figure 3.6 Dynamic linking, incremental compilation example for Stratego.
The compiler is run for each module, governed by the Pluto build system.
An adapted runtime merges strategies dynamically, i.e. during program
start-up.

for each Stratego source file a list of Java classes for the strategy definitions
in that file. With some changes to the Stratego runtime system, the Java
classes are merged at run-time rather than merged statically. At the start of the
program, all loaded classes register themselves by name to a StrategyCollector,
as illustrated in Figure 3.7.

The Main class initialises fields for every strategy by looking up the strategy
by name from the collector. The collector builds StrategyExecutor objects
for this which contain an array of Strategy classes that are produced by the
compiler. These are attempted in order when the StrategyExecutor is invoked.
Although the HashMap lookup based on strategy name is only done once for
every strategy call, each strategy definition from a different module requires a
separate invocation in a different class.

3.3.4 Summary

Whole-program compilation requires minimal configuration and is therefore
easy to use and requires less maintenance. However, whole-program compila-
tion does not scale because recompilation time is proportional to the size of
the entire program instead of the size of the change. We would like to keep
the low-configuration benefit of whole-program compilation, while scaling
incrementally with the size of the change. Pure separate compilation cannot
be applied, as whole-program knowledge is required for compilation. The
disadvantage of the dynamic linking model is that it shifts the burden of
integrating strategy definitions to run-time, which incurs execution overhead
and requires disruptive changes to the compilation scheme. Therefore, we
need a hybrid-incremental compilation approach, which we describe and apply
to Stratego in the next section.
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desugar(|env): Var(e) -> <lookup> (e, env)

⇓
public class desugar_0_1 extends RegisteringStrategy {

public static final Strategy instance = new desugar_0_1();

public static Strategy getStrategy(Context context) {
return context.getStrategyCollector().getStrategyExecutor("desugar_0_1");

}

public void registerImplementators(StrategyCollector collector) {
collector.registerStrategyImplementator("desugar_0_1", instance);

}

public void bindExecutors(StrategyCollector collector) { ... }

public IStrategoTerm invokeDynamic(IStrategoTerm term, IStrategoTerm arg1) {
// ... match Var, bind e to local variable, build pair, bind to current term

...
term = Main.lookup_0_0.invoke(term); // note the difference in invocation!
return term;

}
}

x Figure 3.7 Compilation scheme with dynamic linking.

3.4 Incremental Compilation

In this section we first present our approach to incremental compilation in
general. Then we make this concrete by presenting the application of our
approach to the Stratego language and compiler.

3.4.1 A General Blueprint for Incremental Compilation

Our approach to incremental compilation results in a compiler that, from an
external interface, looks like a whole-program compiler, not a separate com-
piler. Internally it uses an incremental build system that handles dynamically
discovered dependencies. This build system caches intermediate results within
the compiler to make it incremental.

Data Splitting. The key idea is that every file that the compiler reads, is split
up into parts as soon as possible. Each of these parts is then processed by
separate build tasks. This allows the build system to pick up on parts that are
unchanged in the file and parts that are changed. This idea is what gives the
compiler sub-file incrementality.

The size of the parts influences how incremental the compiler is. A coarse-
grained split results in less incrementality as more code unrelated to a change
is recompiled. A fine-grained split increases the interaction between the parts
during compilation steps, so that the overhead of the build system tracking
all the dependencies becomes higher than the gains from avoiding repeated
compilation of unchanged code.

The split to choose depends on the language features, and how much of
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the original compiler to reuse as is. A reasonable split is to choose parts that
become separate outputs of the compiler. However, a finer-grained split is also
possible, where parts are merged in a later stage of the compiler.

Compiler Stage Splitting. Using an incremental build system to compose a
compiler allows defining compiler stages as build tasks. The outputs of build
tasks are cached and can be reused on recompilation. More tasks means more
dependency tracking and thus more overhead. The number of tasks mostly
depends on the granularity of the data split. However, even stages that operate
in succession on a single part of the data can be split to improve performance.
The main idea behind splitting up a successive operations is to avoid the later
(expensive) operations in the chain, if an early operation results in the same
output despite the change in input. That is, if an early operation gives the
same output for different inputs, and the following operations are expensive, it
may be worth the build system overhead to split the operations over multiple
tasks. This allows the build system to cut off early when it observes that an
intermediate result has not changed. The trade-off should be made by taking
into account the overhead of the build system for such a change, the chance
that this situation happens, and the expense of the later operations.

3.4.2 Incremental Compilation for Stratego

To apply this blueprint to Stratego, we split modules by strategy definition and
some extracted information for the static analyses at the end of the front-end
of the compiler, as illustrated in Figure 3.8 on page 78. Then we merge strategy
definitions with the same name and arity, and call the compiler back-end for
each of these merged definitions. This results in one sub-front-end task per
strategy in a file, one front-end task per file, and one back-end task per merged
strategy, to minimise the work when a small change is made in a file.

The static analyses are done non-incrementally and were found to take an
insignificant amount of time in our benchmarks (Section 3.5). Other languages
with more expensive static analyses may benefit from an incremental static
analysis stage.

PIE. As our build system we use PIE (Konat, Steindorfer et al. 2018; Konat,
Erdweg and E. Visser 2018), a sound and incremental build system supporting
dynamically discovered dependencies to build tasks and files. Build tasks
are regular (imperative) functions, except that they call other tasks (and can
use their return value) by ‘requiring’ them, which instructs PIE to record a
dependency. Similarly, build tasks can require (read from) or ‘provide’ (write
to) files, which records dependencies to those files. PIE only re-executes tasks
when their input changes, when the return value of a required task changes,
or when a required/provided file changes. Otherwise, PIE returns the cached
value of a task, providing incrementality implicitly, freeing the build developer
from having to explicitly handle incrementality.

Build Algorithm. In Listing 3.1 we present the build orchestration algorithm.
It includes type definitions and helper functions in listing 3.1a, which combine
information from one front-end task into the available global information.
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type M = String // Module name
type S = String // Strategy name
type C = String // Constructor name
type AST = ATerm // Stratego Core AST
type SI = struct: // Static Information

imps: Rel[M, M], // Imports
defStrs: Rel[M, S], // Defined strategies
defCons: Rel[M, C], // ... / constructors
usedStrs: Rel[M, S], // Used strategies
usedCons: Rel[M, C], // ... / constructors
strUsedCons: Rel[S, C], // ... per strategy
strASTs: Rel[S, AST], // Definitions of strats
olayASTs: Rel[C, AST], // ... / overlays

type FI = struct: // Front-end Information
imps: Rel[M, M],
defStrs: Set[S],
defCons: Set[C],
usedStrs: Set[S],
usedCons: Set[C],
strUsedCons: Rel[S, C],
strASTs: Rel[S, AST],
olayASTs: Rel[C, AST],

type LI = struct: // Library Information
defStrs: Set[S],
defCons: Set[C],

func combineInfo(si: SI, mod: M, fi: FI):
si.imps[mod] := fi.imps ∪ defaultImps
si.defStrs[mod] := fi.defStrs
si.defCons[mod] := fi.defCons
si.usedStrs[mod] := fi.usedStrs
si.usedCons[mod] := fi.usedCons
si.strUsedCons ∪= fi.strUsedCons
// Strategies with the same name go together:
si.strASTs ∪= fi.strASTs
si.olayASTs ∪= fi.olayASTs

func combineInfoLib(si: SI, mod: M, li: LI):
si.defStrs[mod] := li.defStrs
si.defCons[mod] := li.defCons

task frontEnd(M) → FI
task subFrontEnd(S) → FI
task frontEndLib(M) → LI
task backEnd(S, Set[AST], Set[AST])

(a) Type definitions and combining front-end inform-
ation into the static information struct.

task main(mainMod: M):
W: List[M] := [mainMod] // Worklist
// Prevent loops for cyclic module imports
seenMods: Set[M] := {mainMod}
staticInfo: SI := SI() // Static analysis info
// FRONTEND + COLLECT STATIC ANALYSIS INFO
while W is not empty:

mod := W.pop()
if mod.isLibrary():

// cached task call
li := req frontEndLib(mod)
combineInfoLib(staticInfo, mod, li)

else:
fi := req frontEnd(mod) // cached task call
combineInfo(staticInfo, mod, fi)
// Follow imports
W.pushAll(staticInfo.imps[mod] \ seenMods)
seenMods ∪= imps[mod]

// STATIC ANALYSIS
staticChecks(mainMod, staticInfo)
// BACKEND
for unique (_, str) in staticInfo.defStrs:

olayASTs′ := {}
for con in staticInfo.strUsedCons[str]:

olayASTs′ ∪= staticInfo.olayASTs[con]
// cached task call:
req backEnd(str, staticInfo.strASTs[str],

olayASTs′)

func staticChecks(main: M, si: SI):
visStrs := si.defStrs; visCons := si.defCons
for scc in topoSccs(main, si.imps):

visCons′ := {}; visStrs′ := {}
for mod in scc:

visStrs′ ∪= visStrs[mod]
visCons′ ∪= visCons[mod]
// propagate info from earlier iter
for m in si.imps[mod]:

visStrs′ ∪= visStrs[m]
visCons′ ∪= visCons[n]

for mod in scc:
visStrs[mod] := visStrs′
visCons[mod] := visCons′
assert(usedStrs[mod] ⊆ visStrs′)
assert(usedCons[mod] ⊆ visCons′)

(b) Pseudocode for the build orchestration.

x Listing 3.1 The build orchestration algorithm, simplified to fit on one page.
Tasks (which are incrementalized) are defined with the task keyword,
and called (required) with req. The subFrontEnd, frontEndLib, and backEnd
tasks are calls into parts of the original compiler, wrapped as tasks so they
are incrementalised by the build system. The front-end tasks require the
file corresponding to their input module, and the back-end tasks provide
the generated files, ensuring re-execution when the input files change.
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main./m.str
imports k
strategies

s1
s1
s2

./k.str
strategies

s2
s3

front-end

s2_0_0 (k)

s3_0_0 (k)

front-end

s1_0_0 (m)

s2_0_0 (m)

s1_0_0.java

s2_0_0.java

s3_0_0.java

reads
generates
requires task

back-end

back-end

back-end

static info Main.java
back-end

InteropRegistrer.java

./m.str

sub-front-end
s1

sub-front-end
s2

sub-front-end
s2

sub-front-end
s3

x Figure 3.8 Static linking, incremental compilation example for Stratego. A
frontend task for each file, a backend task for each strategy.

Note the commented line, which combines maps of strategy name to strategy
definition AST. This is the point where strategies from different modules are
combined by name.

Listing 3.1b contains the pseudocode of the build algorithm. The main task
which orchestrates the build uses a worklist, starting from the main module, to
run frontend tasks for each module. New modules are found through imports
of processed modules.

The output of the front-end calls are collected and merged by strategy or
constructor name, which is used in the static analysis (staticChecks function).
Note that staticChecks is a function, not a task, and is therefore not cached,
because it requires global information which changes almost every run, making
caching moot. If staticChecks succeeds, the backend is called once per strategy,
which takes a list of ASTs for that strategy (the contributions from different
modules) and a list of ASTs for overlays that are used in the strategy.

Static Analysis. In order to be compatible with the original whole program
compiler, we reimplement the static analysis in a staticCheck function that
takes in the gathered static information.

We use a topological order over the import graph, so we can easily propagate
the strategy definitions according to the transitive import semantics. But since
the graph can have cycles, we process the strongly connected components
(SCCs) of the import graph instead of individual modules. In other words, a
group of modules that import each other is processed together.

The visible strategies and constructors are computed first, then the used
strategies and constructors are checked to be a subset for each module. To fit
all the code on one page, we have elided some other static analyses from the
pseudocode in Listing 3.1. This includes some analysis information that is used
by all back-ends. The following analyses are included in the implementation:

Ambiguous Strategy Call Resolution Ambiguous strategy calls result from
the use of bare strategy names in strategy argument position. We resolve
these names by looking for strategies of any arity with the same name. If a
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strategy exists with arity 0/0, the reference must resolve to this strategy and is
considered unambiguous. When this arity does not exist, but there is only one
arity available, the name can also be resolved. In other cases, where zero or
more than one strategies are found, we report an error. The resolved names
are returned by the static analysis. The resolutions are used in the back-end to
replace the original names with the ones that include arity.

Extending and Overriding Strategies To be able to extend or override a strategy,
an external strategy from a library needs to exist. External strategies are de-
clared by a library along with the compiled implementations. We check for
non-overlap of the relevant sets and give errors on any that are found.

Cyclic Overlay Check While looking into the original compiler details for
overlays, we discovered a missing check. The original compiler greedily
expands overlays. Therefore an overlay definition overlays A() = A() will
cause the compiler to loop. We added a check to fix this bug, which checks if
there for cycles between any overlays (self-loops and indirect cycles). Overlays
are only pattern aliases, without conditionals, so this analysis can be complete.
We build a dependency graph of overlays and check for cycles.

Implementation Effort. The incremental Stratego compiler was developed by
one of the authors over a period of 10 months. Given the time spent on other
tasks, this comes down to approximately 6-7 months of full-time equivalent.
Before the start of the project the author was not very familiar with the compiler
internals of Stratego.

The original Stratego compiler architecture certainly helped to make this
quick development possible. The compiler generally transforms immutable
trees (the AST), which makes it relatively easy to split off parts of it into
cacheable tasks. The complicating factor is some mutable data structures that
are used for extra (analysis) information. The mutation of these data structures
would not be cached if naively separated into tasks to be cached.

Conclusion. Our incremental compiler is an instantiation of our general blue-
print for hybrid-incremental compilers. We use an incremental build system
internally to incrementalise compilation tasks. Our compilation scheme splits
files by top-level definition resulting in incrementality per top-level definition.
It reuses the front-end of the original compiler on each top-level definition
separately, and caches the results. After the front-end, the compiler performs
all static analyses, merges top-level definitions with the same name and arity,
and reuses the backend of the original compiler on each top-level definition
separately. The output is completely backward compatible with the original
runtime system.

3.5 Evaluation

We evaluate the performance of our incremental Stratego compiler by com-
parison against the original compiler. In particular, we evaluate the following
research questions:

RQ1 Does the incremental compiler scale with the size of the changes?
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RQ2 What is the overhead of a clean build with the incremental compiler?

RQ3 Is the incremental compiler correct with respect to the original compiler?

3.5.1 Research Method

In a controlled setting, we compare the performance of the original compiler
and our incremental compiler. We run our experiments on a MacBook Pro
(Early 2013) with an Intel Core i7 2.8 GHz CPU, 16 GB 1600 MHz DDR3 RAM,
and an SSD. The machine is running Mac OS 10.14.5, Java OpenJDK 1.8.0_212,
Docker 2.0.0.3 (31259), VirtualBox 5.2.8 r121009 (Qt5.6.3), and Spoofax 2.5.8. As
the experiments are performed inside a virtualised environment (Docker), the
absolute numbers of our measurement may be higher than typical usage of
the compiler in a normal setting. However, the virtual machine image can be
easily reused by others to reproduce our experiments.

Subject. As a benchmark subject we use the WebDSL language implement-
ation. We use the version control commit history from 2016 to August 2019,
consisting of 200 commits.

Data Collection. We perform measurements by repeating the following steps.
We run a clean build with the incremental compiler. Then we step to the next
commit and pass the list of changed files to the compilation system. We do this
for each commit. We measure the elapsed time for each successive compilation
step, through Java’s System.nanoTime.

We warm up the JVM on which the compiler runs by compiling a project and
3 successive commits, followed by a garbage collection. This was established
by repeatedly running the benchmark on a cold JVM for many commits and
noting the stabilisation of result times within 3 commits. We measure each
project in a separate JVM invocation. During the JVM invocation we warm up
once, and repeat the measurements 5 times. The results are shown as stacked
bar-plots (with the arithmetic mean for each part) with whiskers to show the
sample standard deviation (SD) in compilation time.

Similarly we run the original compiler for each project. This is only done to
check that the compilation time of the original compiler does not vary much.
We warm up the JVM as before with 1+3 compilations, and afterwards measure
for each commit, and again go through the history 5 times. The results are
shown with whiskers to show the full range (R) in compilation time.

3.5.2 Results

Scaling. Of all 200 commits, 2 commits failed to build and were excluded
from the results. We inspected these and determined that these failures were
due to bugs that were fixed in the next commit. They failed to build with the
original compiler as well as the incremental compiler.

Figure 3.9 shows the results of our benchmark for the WebDSL codebase. We
found 78 commits that do not change any Stratego files and are excluded from
the plot for that reason. The first commit, which is not compiled incrementally
is also excluded. The remaining 119 commits are sorted in two different ways
for comparison. The number of changed source files are shown in the top plot
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x Figure 3.9 Benchmark results of the incremental compiler on the WebDSL
codebase from two perspectives. The results are displayed per commit,
broken down into different parts of the incremental compiler. The Y-axis
is time in seconds. The X-axis is number of changed files in the top plot,
and the size of the trees passed to the frontend in the bottom plot.

on the x-axis, the bottom plot shows the sum of sizes of (abstract syntax) trees
passed to sub-front-end tasks.

The number of changed source files does not have a direct correspondence
with the amount of work the incremental compiler needs to do. Although it is
in direct relation with the effort for parsing, subsequent parts of the compiler
deal only with changed top-level definition. The plot shows how the total
incremental compile time does not scale directly with the number of changed
files.

The front-end times are closer, but still not one-to-one, correlated with the
sizes of trees passed to them. Some Stratego language constructs are desugared
into much larger pieces of code which are then processed further, so a small
change to the text or tree can still have a non-proportional impact.

The code generation part of the compiler is a more straight-forward transla-
tion. If we would order the plot by sizes of trees passed to the back-end tasks,
we would see a strict decline of the back-end times over the plot.

Overhead. We compare the overhead of the incremental compiler during a
clean build, as this is where the user of the incremental compiler will notice
the overhead. For the WebDSL codebase, the observed clean build time for
the incremental compiler is 178.53 seconds, whereas the build time of the
original compiler is on average 93.54 seconds (see also Figure 3.10). In other
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Time (s)

x Figure 3.10 Benchmark results of the original compiler on the WebDSL
codebase. The X-axis is time in seconds. This is a boxplot over the
measurements for all commits, as they have low variance. The whiskers
span the full range of measurements.

words, the incremental compiler has an overhead of 90.8 % for clean builds
on the WebDSL codebase (RQ2). All incremental compilations are under the
lowest fastest time with the original compiler. The overhead of the incremental
compiler may have a variety of different causes.

Correctness. To test the correctness of our compiler, we ran the full WebDSL
compiler test suite. We used the result of compiling the WebDSL project with
the incremental compiler and the original compiler. The two resulting WebDSL
compilers had the same behaviour for all tests (RQ3) (in both successes and a
number of failures, which were expected behaviour according to the WebDSL
developers).

3.5.3 Interpretation and Discussion

Although the scaling behaviour of the incremental compiler does not entirely
follow the size of changes to files in the benchmark, the general tendency is
there (RQ1). When we inspect particular pairs of commits with unexpected
ordering we find that unexpectedly cheap (in incremental compile time) com-
mits change a strategy with the same name over multiple files. Unexpectedly
expensive commits make changes in strategies that use expensive language
features that are expanded by the compiler to much larger pieces of code.

Something we should note is a known issue with the official Stratego parser
we use. This parser can take a relatively long time to parse certain Stratego
files. This issue is solved in a new version of the parser, but that version is
currently not stable enough for us to use in the benchmark.

The size of the overhead seems to reside in something other than the over-
head of PIE itself and the shuffling of information. Our reimplementation of
the static analysis of Stratego is also not the problem. It is unclear what exactly
causes the overhead, but somehow the multitude of calls into the original com-
piler code or the separate treatment of the different files is causing overhead
in the incremental compiler. We have attempted experimental changes to the
compiler to verify or falsify assumptions on where this overhead comes from,
but so far without success.

Compared to the time it takes for every compilation with the original
compiler, a single clean build is a cost that anecdotally Stratego users are
willing to pay for the speedup they receive on later incremental compilations.
Despite the overhead that is visible in the clean build, our incremental compiler
provides a speedup of up to ∼90× for small changes in one or two files. Most
commits take less than 10 seconds to compile, versus the 1.5 minutes that
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the original compiler takes, massively increasing productivity for Stratego
programmers.

3.5.4 Threats to Validity

We explicitly discuss the threats to validity of this benchmark. In particular,
we address generalisability of the results (external validity), factors that allow
for alternative explanations (internal validity), and suitability of metrics for
the evaluations goals (construct validity).

External Validity. A threat to the generalisability of our results is that we only
evaluated our Stratego compiler on Stratego code that originated from our
research group. Therefore it has a certain code style that may influence the
efficacy of our compilation approach. With the inclusion of WebDSL we cover
all Stratego features and the classic Stratego code style with highly overloaded
strategies, which are more expensive to compile incrementally.

Internal Validity. A factor that allows an alternative explanation for our results
is miscompilation, where only part of the program was actually successfully
compiled, and another part was ignored. Early in the development of the
compiler we found strange measurement results that came from the error
recovery in the parser. Because of a misconfiguration, the Stratego parser
sometimes failed to parse the entire file. Error recovery in the parser ensured
that an abstract syntax tree was still returned, containing only those top-
level strategy definitions that could be parsed successfully. Because our new
compiler did not check if the parser had recovered from errors, parts of
the Stratego program were not actually compiled. We found and fixed this
problem through careful inspection of the benchmark results, and avoided
more problems by running the WebDSL compiler test suite.

Construct Validity. Regarding the suitability of metrics for the evaluation goal,
we measure performance using elapsed time only. We control JIT compilation
with a warmup phase. By running the garbage collector in between measure-
ments, and monitoring the available memory, we control memory availability
during all measurements. However, the incremental compiler stores intermedi-
ate results in memory and may perform differently in environments with less
memory available.

Of course we can also not entirely eliminate background noise. However,
we have repeated all measurements five times and see low variance between
measurements (maximum sample standard deviation was 0.36 seconds). This
is also visible in Figure 3.9, where we display black whiskers on each stacked
bar, all of which are barely distinguishable.

The virtualisation of our benchmark allows easy distribution of the bench-
mark for reproduction of our results. Since we use a long-running macro-
benchmark, the virtualisation does not significantly influence the results. The
same benchmark, run on the same hardware without virtualisation, shows
similar results. There is only a 0 % to 25 % reduction in times, where the
longest times were reduced most, which shows the overhead of virtualisation.
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3.6 Related Work

Recompilation. Independent compilation was an early way to speed up com-
pilation by splitting up work and caching the intermediate results (Backus
and Heising 1964). To reinstate guarantees of static analysis on the entire
program, Mesa introduced separate compilation (Geschke, Jr. and Satterth-
waite 1977) and inspired other languages such as Modula-2 (Wirth 2007) and
(an extension of) Pascal (Kieburtz, Barabash and Hill 1978) to do the same.
Incremental compilation was another refinement of the concept to allow a more
arbitrary splitting of the work instead of by file (Reiss 1984; Ryan, Crandall
and Medwedeff 1966).

The novelty of our approach is to apply these (already over 30-year-old)
ideas in a new way. We use an incremental build system to piece together
parts of an existing non-incremental compiler into an incremental compiler.
The expressive power of the build system we use, with dynamically discovered
dependencies, allows us to fully express the build of the language inside the
compiler. Therefore, the build system becomes an invisible part of our compiler.
The user does not need to configure it on a per project basis.

Build Systems. Relevant incremental build systems are of course the system we
use, PIE (Konat, Steindorfer et al. 2018), as well as its predecessor Pluto (LW15).
Pluto was in some ways more powerful than PIE as it can handle circular build
dependencies which require a registered handler to compute a fixpoint. PIE,
however, has much less overhead because it does not support this feature, and
because it can do so-called bottom-up builds (Konat, Erdweg and E. Visser
2018). A bottom-up build requires the list of changed files and directories and
uses that and the previous execution of the build script to do the minimal
updates necessary to have a consistent output again. This gives less overhead
from the build system because parts of the dependency graph do not need to
be traversed at all.

Of course there are other build systems, both those that support increment-
ality and those in which incrementality can be hacked in by dynamically
generating new build scripts and calling into those. Mokhov, Mitchell and
Jones analyse the features of different build systems and give an overview of
desirable features (Mokhov, Mitchell and Jones 2018).

Our approach is that the build system is an invisible part of our compiler.
The build is defined once and for all inside the compiler, therefore the user
does not need to configure it on a per project basis.

Incremental Compilers. While our compilation approach works well for reusing
an existing compiler, there are other approaches to incremental compilation,
especially when one is built anew.

An example of a different incrementalisation approach is JastAdd, a Java
compiler built entirely on Reference Attribute Grammars (RAGs). These RAGs
gave support for incremental evaluation (Söderberg and Görel Hedin 2012).
To do something similar for the Stratego compiler we would need to build a
completely new Stratego compiler in terms of RAGs, which is a non-trivial
amount of work.
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Another example of an incremental compiler is rustc, the compiler for
the Rust programming language. The rustc compiler has an experimental
incremental compilation mode that caches intermediate results, automatically
records (dynamic) dependencies between these results, and reuses cached
results when a dependency chain has not been invalidated (Woerister 2016).
However, this incremental compiler mode is not enabled by default (at the
moment of writing) (Woerister 2019), since it sometimes makes compilation
slower because of the overhead of incremental computation. The difference
with our approach is that the Rust compiler automatically tracks dependencies
based on reads and writes of data structures, whereas in our approach, we
explicitly state the units of computation and dependencies between these
computations. While explicitly stating this requires more effort, the advantage
is that we can tune the granularity of the incremental compiler, to prevent the
case where fine-grained dependencies cause too much overhead.

Extension Unification. Extensibility has been studied from different perspect-
ives. Erdweg, Giarrusso and Rendel created a classification of extensibility,
where Stratego falls within ‘extension unification’ (Erdweg, Giarrusso and
Rendel 2012, § 4). Extension is the terminology for supporting “language
extension of a base language [where] the implementation of the base lan-
guage can be reused unchanged to implement the language extension” (ibid.,
§ 2.1, Def. 1). Unification is the terminology for supporting “language unifica-
tion of two languages [where] the implementation of both languages can be
reused unchanged by adding glue code only” (ibid., § 2.2, Def. 2). Stratego has
a composition of extension and unification in that languages can be extended
from a base (pre-defined strategies), and the different extensions (contributions
to a pre-defined strategy) can be unified unchanged.

Expression Problem. The expression problem defined by Wadler has more
stringent requirements (Wadler 1998). There is a reason its name includes
‘problem’. Over the years there have been many suggested solutions (Torgersen
2004; Wang and Oliveira 2016; Kiselyov 2010) and extensions of the problem
statement (Odersky and Zenger 2005; Kaminski et al. 2017). The cited papers
are only a few examples.

Stratego does not have the strong static type system required by Wadler for
the original expression problem. This gives the language some more flexibility
to attain the other properties more easily. Both types and functions on those
types can be extended, without a change to the original code. And as presented
in this chapter, Stratego can now be separately compiled. There is also no
linear order in language extensions defined in Stratego, as required by Odersky
and Zenger (2005), nor is there any glue code for combining different language
extensions as required by Kaminski et al. (2017).

Language Definitions. From a different perspective, if we look at competitors
in language definitions we might look at attribute grammar systems such as
Silver (Van Wyk et al. 2010) and JastAdd (Ekman and Görel Hedin 2007a). Silver
has separate compilation and generates multiple separate Java classes so it can
leverage the Java compiler for hybrid incremental compilation, if composed by
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an external build system. It also leverages some dynamic linking to allow more
concerns to be compiled separately, and therefore make compilation more
incremental (Van Wyk 2019). We are not aware of a publication on JastAdd’s
compilation scheme.

3.7 Conclusion

In this chapter we have presented a design approach for hybrid incremental
compilers. These compilers look like a whole-program compiler from the
outside, but leverage an internal, incremental build system for incremental
compilation. The blueprint of this design includes considerations on how to
split up data and how to split up compiler stages inside the build system. We
have given a concrete example of the blueprint with an incremental compiler
for Stratego.

To motivate the decisions we made in our instantiation of the blueprint,
we have presented an analysis of the Stratego language and shown how
different features require global information to be compiled. The particularly
problematic feature is that of unifying top-level definitions with the same name
into a single definition that attempts the different alternatives.

Our instantiation of the blueprint splits up a file into top-level definitions
early, processes each, then combines all equal-named top-level definitions
before moving on to code generation. The static analysis is reimplemented but
all other parts of the compilation are recycled from the original compiler.

By going through the version control history of a large Stratego project,
we have demonstrated the incrementality of the new compiler. The original
compiler takes about 93±3 seconds to compile the project. Our results show
that all but one commit with 1 file changed are compiled in under 10 seconds,
a majority of 1 file changed commits compile in under 5 seconds, and even the
largest commit which changes 50 files is incrementally compilable in under 40

seconds.
We would like to see another real-world programming language gain an

incremental compiler with our design approach. The internally used build
system and reuse of compiler components should make it a reasonably sized
project that can greatly benefit the users of the programming language. It
would also strengthen our hypothesis that this approach is reusable for other
programming language compilers.
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Chapter 4

Gradually Typing Strategies

Abstract. The Stratego language supports program transformation by means of term
rewriting with programmable rewriting strategies. Stratego’s traversal primitives
support concise definition of generic tree traversals. Stratego is a dynamically typed
language because its features cannot be captured fully by a static type system. While
dynamic typing makes for a flexible programming model, it also leads to unintended
type errors, code that is harder to maintain, and missed opportunities for optimisation.

In this chapter, we introduce a gradual type system for Stratego that combines the
flexibility of dynamically typed generic programming, where needed, with the safety
of statically declared and enforced types, where possible. To make sure that statically
typed code cannot go wrong, all access to statically typed code from dynamically typed
code is protected by dynamic type checks (casts). The type system is backwards com-
patible such that types can be introduced incrementally to existing Stratego programs.
We formally define a type system for Core Gradual Stratego, discuss its implementation
in a new type checker for Stratego, and present an evaluation of its impact on Stratego
programs.

Based on: Jeff Smits and Eelco Visser (2020). ‘Gradually typing strategies’. In: Software Language
Engineering (SLE), Proceedings, pages 1–15. doi: 10.1145/3426425.3426928

https://doi.org/10.1145/3426425.3426928


4.1 Introduction

The Stratego language supports program transformation by means of term
rewriting with programmable rewriting strategies (E. Visser, Benaissa and
Tolmach 1998). Stratego’s traversal primitives support concise definition of
generic tree traversals. For example, the definition of bottomup(s) in List-
ing 4.4 on page 94 defines in one line a generic bottom-up traversal that can be
instantiated with a selection of rewrite rules to be applied in a particular trans-
formation, without needing to define a traversal for each constructor in the
abstract syntax. Stratego is used in the Stratego/XT program transformation
tool suite (Bravenboer, Kalleberg et al. 2008) and the Spoofax language work-
bench (Kats and E. Visser 2010) and used in production in research, education,
and industry (Konat, Steindorfer et al. 2018; Denkers, van Gool and E. Visser
2018).

Stratego is a dynamically typed language, because its language features
cannot be captured fully by a static type system. While dynamic typing makes
for a flexible programming model, it also exposes Stratego programmers to
unintended type errors. Static typing of strategies has been considered before
by Lämmel and J. Visser (2002), Lämmel (2003), and others. Lämmel and Jones
(2003) adopted Stratego’s strategic programming in the SYB Haskell design
pattern. These efforts focus on the statically typable fragment of strategies,
making them unsuitable, as is, as a type system for Stratego. Furthermore,
there is a considerable base of existing Stratego code, and having to convert
that, at once, to statically typed code would preclude adoption of a type
system.

In this chapter, we introduce a gradual type system for Stratego that com-
bines the flexibility of dynamically typed generic programming, where needed,
with the safety of statically declared and enforced types, where possible. We
integrate ideas for statically typing strategies by Lämmel (2003) with ideas
from the gradual typing literature (Siek and Taha 2006; Siek and Taha 2007). In
particular, we extend conventional static types with the special type for type
preserving transformations (Lämmel 2003). And we introduce a dynamic type
in the tradition of gradual type systems to account for, as yet, untyped code.
At the interface of statically and dynamically typed code, the type checker
inserts dynamic type checks (through casts and proxies) to guarantee the
assumptions of static code. This ensures that the type system is backwards
compatible such that existing code can pass the type checker as is, and such
that types can be introduced incrementally to existing code. At the intersection
of typed strategies and gradual types, we find an interesting dynamic types
for strategies. For example, the type unifying strategies of Lämmel (2003) do
not need a special type, but can be modelled with a dynamic input type and a
specific result type.

The four contributions of this chapter are:

• We motivate and validate the gradual type system for Stratego with idiomatic
examples (Sections 4.2 and 4.3).

• We formally define a type system for Core Gradual Stratego, which combines
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static types for generic traversals with gradual types for partially typed
programs (Section 4.4). The combination supports the (partially) dynamic
typing of strategic programming patterns that are inherently not (completely)
statically typable. This constitutes the first static type system for the Stratego
language.

• We have implemented a type checker based on the type system, which
reports violations in the IDE and which generates code with casts and
proxies for type checking at run-time at the interface of statically and
dynamically checked code (Section 4.4).

• We evaluate the application of the type checker on an existing Stratego
codebase to which we added type annotations (Section 4.5).

4.2 Rewriting Strategies and Types

Stratego is a language for the definition of program transformations with
rewrite rules and programmable rewriting strategies (E. Visser, Benaissa and
Tolmach 1998). In this section we give a (non-exhaustive) introduction to
Stratego by means of examples as motivation for a type system. We give
two encodings of the same transformation. The first encoding is completely
statically typable. The second encoding requires dynamic typing. Furthermore,
we analyse typical type errors.

4.2.1 Program Transformation with Stratego

The main ingredients of Stratego programs are algebraic signatures, rewrite
rules, and strategies.

Algebraic Signatures. A Stratego program defines transformations on abstract
syntax trees represented using first-order terms. The structure of terms is
defined by means of an algebraic signature, which introduces sorts (types) and
constructors on those sorts. A constructor declaration c : t1 ∗ ... ∗ tn → t0,
defines a constructor c with the sorts of its arguments and result. A constructor
declaration : t1 → t0 is an injection of t1 into t0. This means a value of t1 can
be used directly as a value of t0 without a constructor. Listing 4.2 defines the
signature of a small imperative language with expressions and statements. An
example of a well-formed term of sort Stat would be:

Seq(Assign("x", Add(Var("x"), Int("1"))), Lt(Var("x"), Int("3")))

Note that sorts and constructors are separate namespaces. In Spoofax,
signatures are generated from a syntax definition in SDF3 (de Souza Amorim
and E. Visser 2020), directly describing the structure of abstract syntax trees
produced by parsers.

Rewrite Rules. Basic transformations are defined using term rewrite rules. A
rewrite rule has the form l : t1 → t2 with label l, left-hand side term t1 and
right-hand side term t2. Applying a rewrite rule with label l to a term t means
matching the term against the left-hand side term t1, binding the variables in
that term to sub-terms of t, and then replacing term t with the instantiation
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rules
desugar : // Exp to Exp

Min(e) -> Sub(Int("0"), e)

desugar : // Stat to Stat
For(x, e1, e2, s) ->
Seq(Assign(x, e1),

While(Lt(x, e2),
Seq(s, Assign(x, Add(x, Int("1"))))))

desugar : // Exp to Exp
Inc(x) -> Stat(Assign(x, Add(x, Int("1"))), x)

desugar : // Stat to Stat; lift Stat from Exp
stat@<is-simple-stat> -> Seq(s1, s2)
where <oncetd-hd((Stat(s1, e) -> e))> stat => s2

x Listing 4.1 Rewrite rules

signature
sorts Var Exp constructors

Var : string -> Var
: Var -> Exp

Int : string -> Exp
Add : Exp * Exp -> Exp
Sub : Exp * Exp -> Exp
Lt : Exp * Exp -> Exp
Min : Exp -> Exp
Inc : Var -> Exp
Stat : Stat * Exp -> Exp

sorts Stat constructors
Exp : Exp -> Stat
Skip : Stat
Assign : Var * Exp -> Stat
Seq : Stat * Stat -> Stat
While : Exp * Stat -> Stat
For : Var * Exp * Exp * Stat -> Stat

x Listing 4.2 Signature

of the right-hand side t2. If the match fails, the rule fails to apply. If the
specification has multiple rules with the same name, they are tried in order.

A rule l : t_1 -> t_2 where s is a conditional rule, where s is a strategy
expression. When applying a conditional rule, the condition s is applied to
the subject term, using variables bound in the match of the left-hand side,
and possibly binding variables that are used in the right-hand side. When the
condition fails, applying the rule fails.

Listing 4.1 shows examples of rewrite rules for a desugaring transformation
on expressions and statements of the language of Listing 4.2. The first two rules
define Min and For in terms of other constructs. The third rule defines increment
(think C-style post increment x++) in terms of assignment to the variable
incremented. Since Inc(_) is an expression and Assign is a statement, replacing
one by the other would not be well-formed. The Stat constructor defines
an expression form that allows embedding a statement within an expression.
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The fourth rule defines lifting of statements embedded in expressions to
the statement level. The match pattern uses a guard that checks that the
term is a simple statement (defined in Listing 4.3), and the condition of the
rule applies a left-most depth-first (‘once-top-down’) traversal that finds an
embedded occurrence of a term Stat(s1, e), replacing that occurrence with
the expression, and binding the statement to variable s1. The syntax for the
match is n @ t to bind variable n to the term t and < s > to apply strategy
s as a guard to the term, i.e. it only matches if the strategy succeeds on the
given term. The argument of oncetd is an anonymous rewrite rule (Stat(s1,
e) -> e) that does not scope its variables. Thus, bindings are available in the
context of the traversal. (Such contextual binders were introduced by E. Visser,
Benaissa and Tolmach (1998) and later generalised to dynamic rewrite rules
by (Bravenboer, van Dam et al. 2006).) For example, the rules give rise to a
sequence of transformations such as the following:

Assign(Var("x"), Min(Inc(Var("x"))))
--> Assign(Var("x"), Min(Stat(Assign(Var("x"),

Add(Var("x"), Int("1"))),
Var("x"))))

--> Assign(Var("x"), Sub(Int("0"),
Stat(Assign(Var("x"),

Add(Var("x"), Int("1"))),
Var("x"))))

--> Seq(Assign(Var("x"), Add(Var("x"), Int("1"))),
Assign(Var("x"), Sub(Int("0"), Var("x"))))

Rules are not applied automatically, but their application (order) is determined
by a strategy.

Strategies. Rewrite rules transform a term into another term. Traditional
rewrite systems apply such rules exhaustively throughout a term. Stratego
provides programmable strategies for ordering the application of rewrite rules
to a term. For example, Listing 4.3 defines the transform strategy to apply the
desugar rules of Listing 4.1 using a bottom-up strategy that tries to apply the
rules at each node. Strategies such as bottomup and try are not built-in, but
generic, parametric strategies defined in terms of basic strategy combinators.

Stratego’s built-in strategy combinators include identity id, failure fail,
sequential composition s1; s2, and ordered choice s1 <+ s2. Matching (and
returning) a term pattern (?t) and instantiating (aka building) a term pattern
(!t) are first-class citizens. The expression <s>t applies strategy s to term t
and the expression s => t matches the result of s against term t. The generic
traversal combinators all(s) and one(s) apply a transformation to all, respect-
ively, one, of the sub-terms of a term. Given a constructor c : t1 ∗ ... ∗ tn → t0,
a corresponding congruence traversal strategy c(s1, ..., sn) transforms c-terms,
applying the corresponding strategies to the sub-terms.

Listings 4.3 and 4.4 use these combinators to define strategies1. Strategy
is-simple-stat determines whether a term is a simple statement through
pattern matching. The traversal strategy oncetd-hd uses congruence traversal to

1Note that there is no strict syntactic separation between rules and strategies. The section
headers are used to indicate intention.
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strategies
transform = bottomup(try(desugar))

is-simple-stat = ?Assign(_,_) <+ ?Exp(_)
<+ ?While(_,_) <+ ?For(_,_,_,_)

oncetd-hd(s) =
While(oncetd(s),id) <+ For(id,oncetd(s),id,id)
<+ For(id,id,oncetd(s),id) <+ Exp(oncetd(s))
<+ Assign(id, oncetd(s))

x Listing 4.3 Strategies

strategies
try(s) = s <+ id
topdown(s) = s; all(topdown(s))
bottomup(s) = all(bottomup(s)); s
oncetd(s) = s <+ one(oncetd(s))
alltd(s) = s <+ all(alltd(s))

x Listing 4.4 Generic strategies

apply a oncetd(s) traversal to selected arguments of constructors (the ‘heads’).
Listing 4.4 defines several generic strategies. The strategy try(s) applies s and
when that fails succeeds with the original term. The strategy bottomup(s) first
visits the direct sub-terms of the subject term with a recursive call and then
applies s to the result. Strategy oncetd(s) transforms the first term for which
s succeeds in left-most depth-first traversal. Strategy alltd(s) applies s to all
outermost terms for which s succeeds.

Non-Well-Formed IR. The rules defined in Listing 4.1 take care to only replace
terms with terms of the same sort. The Stat constructor is used to embed
a statement within an expression. While this is good practice, it is not re-
quired. Listing 4.5 shows an alternative approach to the transformation. The
transformation is defined in two stages. In the first stage, the desugar-inc rule
replaces Inc terms with assignments, creating non-well-formed intermediate
terms. In the second stage, the lift-assign rule lifts assignments embedded in
expressions to assignment level. While intermediate terms are not well-formed
with respect to the signature, after applying transform, terms are well-formed
again.

4.2.2 Type Errors

Stratego is a memory-safe, dynamically typed language. The Stratego
runtime, in collaboration with the code generator or interpreter, ensures that
a program that passes the static checks, does not crash. A program may
terminate with a transformed term, with a (pattern match) failure, or with
an exception. (An alternative version of conditional rules requires that the
condition succeeds and raises an exception if it does not.)

The front-end of the compiler applies some static checks. Constructors need
to be declared and used with the arity corresponding to the declaration. Rules
and strategies need to be defined when called. Variables should be bound
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rules
desugar-inc : // Exp to Stat

Inc(x) -> Assign(x, Add(x, Int("1")))

lift-assign : // lift Stat from Exp
s1@<is-simple-stat> -> Seq(Assign(x, e), s2)
where <oncetd-hd((Assign(x, e) -> x))> s1 => s2

strategies
transform = desugar-all; lift-all
desugar-all = bottomup(try(desugar-inc))
lift-all = alltd(lift-assign; lift-all)

x Listing 4.5 Alternative rules and strategies

rules // errors caught by current compiler
desugar :

Inc(Vaz(x)) -> // unknown constructor
Stat(Assign(y, // unbound variable

Add(Var(x), Int("1"))))
// constructor Stat used with wrong arity
desugar-some =

top-down(desugar) // unknown strategy

rules // errors not caught by current compiler
desugar : // expression replaced with statement

Stat(stat, e) -> stat

desugar : // lifting also applied to expressions
stat -> Seq(s1, s2)
where <oncetd((Stat(s1, e) -> e))> s => s2

desugar :
Inc(x) -> Stat(Assign(Var(x), // Var instead of string

Add(x,Int(1))), // int instead of string
x)

x Listing 4.6 Rules and strategies with errors

when used in a build pattern. Otherwise, the compiler is fairly permissive,
allowing programs such as in Listing 4.5. In Listing 4.6 we give examples of
errors that are caught by the Stratego compiler and errors that are not caught
by the compiler nor by the runtime.

A typical consequence of the lack of static typing is that a transformation is
applied successfully, but constructs a non-well-formed term. Subsequently, a
pretty-printer (e.g., generated from a syntax definition (de Souza Amorim and
E. Visser 2020)) transforming terms to Box expressions, fails because the term
does not match the expected abstract syntax schema. This leads to expensive
debugging sessions to track down the origin of the non-wellformedness. A
type system for Stratego that identifies such errors statically will make Stratego
programming much more productive at micro scale. At macro scale, having
types for interfaces will make code more maintainable. Furthermore, the com-
piler could benefit from the guarantees of static types in optimisations. At the
same time, such a type system should not prevent the usage of existing code.
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4.3 Gradually Typing Strategies

We introduce a type system for Stratego that addresses the lack of static type
checking discussed in the previous section. In this section, we first discuss
the requirements for a type system, and then we give a high-level overview of
the type system building on the examples of the previous section. In the next
section, we formalise the type system.

4.3.1 Requirements

The design and implementation of a type system for Stratego should satisfy
the following requirements. It should be backward compatible such that
existing programs are accepted as is, with the same run time semantics. It
should impose minimal type annotation requirements on programs to preserve
the concise style of Stratego programs. It should support generic traversal
primitives, providing static typing where possible, but also support dynamic
usage. It should support a simple migration path from untyped to typed code.
It should be modularly checkable for integration into the incremental compiler
of Chapter 3. It should have limited negative impact on performance. In the
rest of this chapter, we describe a type system that mostly meets these criteria;
we have not evaluated performance yet.

4.3.2 Types for Stratego

We first discuss complete static checking. We will write strategy to indicate
both rules and strategies.

Top-Level Type Annotations. To force checking the type of a strategy, one
explicitly declares its type using a type annotation. For example, we can
declare the types of transform and desugar-inc from the previous section as:

transform :: Stat -> Stat
desugar-inc :: Exp -> Stat

The caller of a strategy with a type annotation needs to ensure that the term
that it is applied to has the right type. The type checker checks that given
the assumption on the input term, the strategy definition guarantees that the
output term has the specified type, or that the strategy fails. The type system
does not infer types for top-level declarations of strategies. If a type is omitted
type dynamic is assumed, as we will discuss below.

Note that the addition of a top-level type can invalidate code that is accept-
able when dynamically typed.

Type Checking Term Patterns. Given an expected input or output type, the type
checker checks that a pattern is well-formed with respect to that type and the
constructors in the signature. Listing 4.7 on page 98 shows examples of errors
caught in pattern matching and instantiation. These would not be errors if
the type annotation was not present to restrict the strategies to a specific type.
Thus, the errors in Listing 4.6 in the desugaring rule for Inc are all caught.
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Inferring Types of Variables. While we opted to not infer types for top-level
declarations, we do infer types for local variables. Variables in Stratego rules
are declared implicitly by using them in a match position. To avoid clutter, we
do not require explicit declaration of type annotations for local variables, but
rather infer their type from context, where we take the types of the left- and
right-hand sides of a rule as leading. For example, consider the ssa rules in
Listing 4.8. The types of the local variables in the condition of the rule follow
from the type of the strategy, and then from the types inferred in previous
steps in the condition. Consider the errors that are found when the variables
in the Stat(_,_) pattern match are swapped:

ssa : Min(e) -> s2
where <ssa> e => Stat(e', s1)
; !Var(<new>) => x
; !Stat(Seq(s1, // warn: not Stat

Assign(x, Min(e'))),// warn: not Exp
x) => s2 // error: not Stat

Type Preserving Transformations. Generic term traversals, such as bottomup,
apply an arbitrary transformation to the sub-terms of a term. As we illustrated
in Listing 4.5, such generic traversals may construct (temporarily) non-well-
formed terms. However, a particular class of traversals is more well-behaved
and transforms each term to a term of the same type (or fails), possibly
operating heterogeneously on multiple types. In other words, such strategies
are type preserving. Following the work of Lämmel (2003) we introduce the TP
type to characterise type preserving strategies.

Type preserving transformations can be heterogeneous rewrite rules such as
desugar in Listing 4.1, which operate on terms of different types, but ensure
to always transform each term to a term of the same type2. For example,
desugar transforms Exp terms to Exp terms, and Stat terms to Stat terms.
Generic strategies can construct type preserving strategies from type preserving
strategies. For example, if s is of type TP, then try(s) is also of type TP. Similarly,
all(s) is TP if s is, and s1; s2 is TP if s1 and s2 are. Given these ingredients
and the annotation bottomup(TP) :: TP, we can conclude that the definition
bottomup(s) = all(bottomup(s)); s is well-typed, and that bottomup is a type
preserving strategy.

Given the type annotations in Listing 4.9 on page 99, the rules in Listing 4.1
and the strategies in Listings 4.3 and 4.4 are completely statically typable,
except for one detail, which we discuss next.

Type Match. The rule min : e -> Min(e) takes any term and applies Min to
it. That is, its applicability is not guarded by a pattern with a constructor.
For example, in untyped Stratego we can write <min>Skip() => Min(Skip()),
producing a non-well-formed term. When we give it the type annotation min
:: Exp -> Exp we express that when applied to an Exp it will return an Exp. The
caller should guarantee to only apply it to Exp terms. In order to qualify for a
type annotation min :: TP, stronger requirements apply. A TP strategy should

2The difference between TP and polymorphic strategy a -> a is discussed at the end of
Section 4.4.
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strategies
is-stat :: Stat -> Stat
is-stat = ?Assign(_,_) // ok
is-stat = ?Var(_) // error: not a Stat
is-stat = ?Seq(Var(_),_) // error: arg not Stat
mk-stat :: () -> Stat
mk-stat = !Exp(Var("x")) // ok
mk-stat = !Var("x") // error: not a Stat
mk-stat = !Exp(Exp(Var("x")))// error: arg not Exp

x Listing 4.7 Checking (nested) patterns

rules
new :: () -> string
ssa :: Exp -> Exp
ssa : Var(x) -> Stat(Skip(), Var(x))
ssa : Min(e) -> s2

where <ssa> e => Stat(s1, e')
; !Var(<new>) => x
; !Stat(Seq(s1, Assign(x, Min(e'))), x) => s2

x Listing 4.8 Inferring types of variables

be applicable to a term of any type and produce a well-formed term of the
same type as output (or fail). Thus, a TP strategy should check its own input
type requirements. Given that the new type checker relies on dynamic type
checks for casts (see below), we also make this functionality available as a type
match. For any declared sort t, the strategy is(t) dynamically checks that the
subject term is of type t and statically guarantees that that is the case when
it succeeds. Thus, we can define the min rule as min : e@<is(Exp)> -> Min(e)
and give it the TP annotation.

In Listing 4.3 we defined is-simple-stat to identify simple statements. Such
strategies are often used to define fine grained recognisers of subsets of types (E.
Visser 1999). Unfortunately, its use in the desugar rule in Listing 4.1 on page 92

is not sufficient to convince the type checker that the rule is TP. Using the type
match is(Stat) we can convey that it is:

desugar :
s@<is(Stat); is-simple-stat> -> Seq(s1, s2)
where <oncetd-hd((Stat(s1, e) -> e))> s => s2

With that edit, the rules in Listing 4.1 and the strategies in Listings 4.3 and 4.4
are completely statically typable against the type annotations in Listing 4.9.

Polymorphic Strategies. Our type checker supports parametric polymorphic
types for rules and strategies. We use prenex polymorphism with lowercase
names as type variables, which was already used informally (i.e. without type
checker support) in signatures. In Listing 4.10 on page 100 we define several
polymorphic strategies on lists from the standard library (edited for space)
and provide type annotations for them. Note that type match and imperative
update make that we can not support parametricity (Reynolds 1983; Wadler
1989).
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rules
transform :: Stat -> Stat
desugar :: TP
try(TP) :: TP
bottomup(TP) :: TP
oncetd(TP) :: TP
alltd(TP) :: TP

x Listing 4.9 Type annotations

4.3.3 Gradual Types for Stratego

Not all Stratego programs can be statically type checked using the techniques
discussed above. For example, the alternative transformation approach of
Listing 4.5 constructs intermediate terms that are not well-formed with respect
to the signature. Furthermore, there exists a significant amount of Stratego
code without type annotations. Imposing the requirement that all strategies
should be annotated, before the new type checker can be used would be
prohibitive. This is one of the classical motivations for the introduction of
gradual types (Siek and Taha 2006).

We have extended the type system sketched above with dynamic types such
that any existing Stratego program (that passes the static checks of the legacy
compiler), will pass the type checker and will have the same runtime semantics.
(Note that Stratego’s syntax already enforces a distinction between strategies
(functions) and terms.)

Type Dynamic and Type Casts. We extend the set of types with the type dynamic
?, which represents a dynamically checked type (not to be confused with
the match operator). When a typed strategy is invoked on a dynamically
typed term, the term needs to be checked in order to guarantee the input
requirements. This check is done by a type cast, an assertion that verifies that
the subject term has the expected type. Failing the assertion is a programming
error and leads to an exception. The type checker (silently) inserts casts where
needed, in the style of gradual typing (Siek and Taha 2006). When a top-level
strategy does not have a type declaration, it is considered to have a dynamic
type. The dynamic type can also be used explicitly in type annotations.

Gradually Typing Term Patterns. Term patterns in Stratego appear in either
matching or building position. When we match against a dynamically typed
term, we can not assume that it is a well-formed term. Therefore, we only
check that the constructors that are used in the pattern are defined and have
the right arity, compatible with the legacy Stratego compiler. When we build
a term that is expected to be dynamically typed, we also check that the used
constructors are defined and have the right arity. However, we can sometimes
infer the type of a well-formed term in a build pattern (Section 4.4). This extra
type information is propagated, and can prevent some unnecessary casts from
being inserted.

Proxies. The type checker must also type check strategy arguments to other
strategies. We do not support higher-order casts, i.e. type assertions on
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rules
filter(a -> b) :: List(a) -> List(b)
filter(s) : [] -> []
filter(s) : [x | xs] -> <conc> (<opt(s)> x, <filter(s)> xs)

opt(a -> b) :: a -> List(b)
opt(s) = ![<s>] <+ ![]

conc :: List(a) * List(a) -> List(a)
conc : ([], xs) -> xs
conc : ([x | xs], ys) -> [x | <conc> (xs, ys)]

mapconc(a -> List(b)) :: List(a) -> List(b)
mapconc(s) : [] -> []
mapconc(s) : [x|xs] -> <conc> (<s> x, <mapconc(s)> xs)

x Listing 4.10 Polymorphic strategies

strategies
if-odd(Nat -> Nat, Nat -> Nat) :: Nat -> Nat
if-odd(s1, s2): Z() -> <s2>
if-odd(s1, s2): S(t) -> <if-even(s2, s1)> t

if-even(s1, s2): Z() -> <s1>
if-even(s1, s2): S(t) ->

<if-odd(cast(Nat); s2; cast(Nat),
cast(Nat); s1; cast(Nat))> t

// proxy version:
if-even(s1, s2): S(t) ->

<if-odd(proxy(|Nat,Nat|s2),
proxy(|Nat,Nat|s1))> t

x Listing 4.11 Explicit casts surrounding strategy arguments can accumulate
into closures inside closures, a space and time leak we should avoid.

strategies, directly. Instead we do this dynamic type check lazily, at the time the
strategy is called. We do so by creating a new closure for a strategy argument
that includes a type cast. But if a strategy argument is passed through a couple
of statically and dynamically typed strategies, this can lead to an accumulation
of closures in closures, as noted by Herman, Tomb and Flanagan (2010).
Listing 4.11 shows an example. When <intToNat; if-even(!Z(), !S(Z())> 10
is executed, the first argument is wrapped in a type cast closure five times
before it is executed. Therefore, the type checker inserts type proxies instead
of normal casts. These are closures that contain a type assertion for the input
and output of a strategy, and the strategy (closure) itself, as a special value that
the runtime can inspect. When a new proxy is constructed around a proxy
value, these are collapsed into one proxy value to avoid the accumulation of
closures in closures:

proxy(|Nat,Nat|proxy(|Nat,Nat|s1))
--> proxy(|Nat;Nat,Nat;Nat|s1)
--> proxy(|Nat,Nat|s1)

Locally required type casts can be merged with the type casts of the proxy value.
This makes dynamic type checks less lazy, as incompatible type assertions can
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rules
collect(? -> b) :: ? -> List(b)
collect(s) = // all sub-terms for which s succeeds

<conc>(<opt(s)>, <kids; mapconc(collect(s))>)
kids :: ? -> List(?) // list of children, using
kids : _#(xs) -> xs // generic term deconstruction

strategies
vars :: ? -> List(Var) // all variables
vars = collect(?Var(_)) // in a program

x Listing 4.12 Type unifying strategies

be found while adding them to an existing proxy, similar to the work of Siek,
Garcia and Taha (2009).

Type Preserving and Dynamically Typed Traversals. While the TP type allows
static typing of many transformations, the type restricts the legitimate use of
useful standard library strategies. To prevent duplication of type preserving
and dynamically typed versions of the same strategies, the type checker allows
a dynamically typed fall back type annotation for a strategy. For example, the
bottomup strategy can also be typed with the more permissive type annotation
bottomup(? -> ?) :: ? -> ?. This strategy can be called on any term, well-
formed or not, since the strategy argument is given no guarantees on what
kinds of terms it is called upon. Perhaps a more interesting case is the try
strategy, which still has some typing even when not type preserving: try(a ->
b) :: a -> ?. A strategy wrapped in a try must still be called with the right
input type for the strategy.

Type Unifying Strategies. Lämmel (2003) coined the term type unifying strategies
(and the special type TU(b)) for Stratego strategies that take any input and
return a single, typed output. We use ? for the input to allow any input and
a type parameter for the output. Listing 4.12 shows an example of a type
unifying generic traversal.

Polymorphism Revisited. The prenex polymorphism in our type system has
a limitation. The current runtime of Stratego does not support strategies
with explicit type arguments. Therefore, type arguments must be completely
abstract, and cannot be used in dynamic type assertions. Our type system
gives a type error when a cast with a type variable must be inserted. This
means that polymorphic strategies and rules are less gradual than the rest of
gradually typed Stratego.

4.4 A Type System for Core Gradual Stratego

In this section, we present an algorithmic type system for Core Gradual
Stratego, which formalises the ideas of the previous section. Previous work
on formalisations of Stratego were based on System S, the calculus of strategy
combinators (E. Visser and Benaissa 1998; Lämmel 2003). We consider a larger
core language, including signatures and definitions of rules and strategies, as
these matter for the type system.
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sl ::= string literals
f , x ::= names

o ::= f : ot : ot signatures
ot ::= t t → t sig types
t ::= f (t) string ? ill-formed types

st ::= (st) t → t ? strategy types
d ::= f ( f ) = s definitions

f ( f ) : e→ e where s
s ::= f (s) fail id ?e !e strategies

{ x : s } s ; s s < s + s
cast(c) proxy(sc|c,c|s)

e ::= x _ sl f (e) e :: t terms
c ::= id t coercions

sc ::= id st strategy coercions

x Figure 4.1 The Stratego core grammar. Any Stratego program can be de-
sugared to these core constructs.

4.4.1 Core Gradual Stratego

Figure 4.1 defines the grammar of Core Gradual Stratego, which is Core
Stratego extended with (dynamic) types, top-level type annotations, casts, and
proxies. We use vector notation instead of a Kleene star for lists, to mirror the
type rules. These are all zero-or-more, except for the second alternative of ot,
which is one-or-more.

Signatures o, ot consist of constructor definitions with zero or more argu-
ments, and injection definitions (an example is back in Listing 4.2 on page 92).
Types t, or sorts, include built-in types (string, int) and (parameterised) types.
We extend types with the dynamic type ?, and the ill-formed type. We also
add strategy types st to describe strategy arguments.

Definitions d include strategy definitions and rule definitions. Including
rewrite rule in the core is not necessary for dynamic expressivity; usually
they are presented as sugar, by translation to a strategy sequence of a match,
side-condition, and a build (E. Visser and Benaissa 1998). However, we give
type annotated rules a more intuitive typing.

Strategy expressions s consist of calls to strategies or rules, the explicit
match failure strategy, the identity strategy, match, build, scoping a variable,
sequences, guarded choice, and finally the additions, cast and proxy (note that
the two vertical bars that are part of the syntax of proxy). Term expressions
e consist of variables, wildcards, string literals, constructor applications, and
additionally type ascription. Casts and proxies apply coercions, which can be
a coercion c to a type or the identity coercion.

4.4.2 Algorithmic Type System

We present an algorithmic type system, written as a transformation on the
program that inserts casts while type checking. The type system follows an
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Type coercion rules Γ ⊢ t⇝ t : c

Γ ⊢ t1 <: t2

Γ ⊢ t1 ⇝ t2 : id
[csub]

Γ ⊢ ?⇝ t : t
[ccheck]

Subtype rules Γ ⊢ t <: t

Γ ⊢ t1 <: ?
[dyntop]

Γ, t1 <: t2 ⊢ t1 <: t2
[subinj]

Γ ⊢ t1 <: t2

Γ ⊢ f (t1) <: f (t2)
[subcovar]

Γ ⊢ t <: t
[subrefl]

x Figure 4.2 Algorithmic coercion and subtype rules. Alternative rules are tried
in order.

abstract interpretation approach.

Meta-properties. We currently do not have a formal dynamic semantics for
Core Gradual Stratego, but assuming a reasonable dynamic semantics as
sketched in previous sections, we postulate that the type system presented
here is sound for the typed subset of the core language, i.e. all programs
accepted by the type system execute without type-errors. Furthermore, if a
program after cast insertion executes without type-errors, we postulate that
the same program without type annotations (but preserving type tests) will
also execute and give the same result. In other words, type annotations do not
affect the behaviour or results of type-correct programs. Finally, we believe
that the presented transformation rules are deterministic if alternatives are
tried in order, and that their execution terminates for all inputs.

Environments. The type system is meant to be modular, therefore we assume
that environment Γ contains all available definitions and their types, so we can
resolve calls. The environment also contains the types of defined constructors
and the precomputed transitive relation of defined injections, i.e. every map-
ping from one type into another without constructor becomes a subtype fact,
to be available for the [subinj] rule of Figure 4.2. Most of the information in the
environment flows through the type system like a store. Local variables can
be bound to different types at different points in the program, e.g. inside and
after a guarded choice. The arity of dynamically typed strategy arguments is
discovered during type checking.

Coercion, Subtyping and Bounds. Figure 4.2 defines the computation of coer-
cions from one type to another. The [csub] rule defers to subtyping. The
coercion from a subtype to its supertype is the identity coercion. The [ccheck]
rule defines that it is also possible to go from the ? type to any specific type by
coercing to that type.

The subtyping rules in Figure 4.2 define that ? is a supertype of any other
type ([dyntop]). The [subinj] rule looks up an injection in the environment.
The [subcovar] rule defines that parameterised sorts are co-variant in their
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Definition type rules Γ ⊢ d⇒ d ⊣ Γ

len( f ) = j Γ1 = Γ′1, ⟨ f , j⟩ : (st) t1 → t2
Γ1, f : st; t1 ⊢ s1 ⇒ s2 ⊣ Γ2; t3 Γ2 ⊢ t3 ⇝ t2 : c

Γ1 ⊢ f ( f ) = s1 ⇒ f ( f ) = s2; cast(c) ⊣ Γ2
[sdef]

len( f ) = j Γ1 = Γ′1, ⟨ f , j⟩ : (st) t1 → t2
Γ1, f : st; t1 ⊢m e1 ⇒ e3; s2 ⊣ Γ2; t3

Γ2; t2 ⊢b e2 ⇒ e4 ⊣ Γ3; t′2 Γ3; t3 ⊢ s1 ⇒ s3 ⊣ Γ4; t′3
Γ1 ⊢ f ( f ) : e1 → e2 where s1 ⇒ f ( f ) : e3 → e4 where s2; s3 ⊣ Γ4

[rdef]

x Figure 4.3 Algorithmic typing rules for adding definitions to the environment.
Alternative rules are tried in order.

Strategy typing Γ; t ⊢ s⇒ s ⊣ Γ; t

Γ1; t1 ⊢m e1 ⇒ e2; s ⊣ Γ2; t2

Γ1; t1 ⊢ ?e1 ⇒ ?x@e2; s; !x ⊣ Γ2; t2
[match]

Γ1; t1 ⊢b e1 ⇒ e2 ⊣ Γ2; t2

Γ1; t1 ⊢ !e1 ⇒ !e2 ⊣ Γ2; t2
[build]

len(s1) = j Γ1 = Γ′1, ⟨ f , j⟩ : (st) t1 → t2

Γ1; st ⊢sa
⊢sa s1 ⇒ s2 ⊣ Γ2 Γ2 ⊢ t0 ⇝ t1 : c

Γ1; t0 ⊢ f (s1)⇒ cast(c); f (s2) ⊣ Γ2; t2
[call1]

len(s1) = j Γ1 = Γ2, ⟨ f , 0⟩ : ?

Γ2, ⟨ f , j⟩ : (?) ?→ ?; ? ⊢sa
⊢sa s1 ⇒ s2 ⊣ Γ3

Γ1; t1 ⊢ f (s1)⇒ f (s2) ⊣ Γ3; ?
[call2]

x Figure 4.4 Excerpt of the algorithmic typing rules for the core Stratego
strategy expressions. Alternative rules are tried in order.

parameters. Subtyping is reflexive ([subrefl]), but not transitive. Instead we
took the transitive closure of the injections before the start of the program.

With this definition we can define the least-upper-bound and greatest-lower-
bound on types. The representative type is used for any two types from an
injection cycle. In all other cases it is the expected bound wherever injections
form a lattice. Note that injections do not guarantee a lattice structure, so there
may not be unique bounds. In those cases where we do not find a unique
bound, we use the ? type.

Definitions. Figure 4.3 defines the typing judgements for rule and strategy
definitions. Rules for definitions look up their type in the environment, and
register their arguments and type variables. For strategy definitions [sdef], we
then check the body, and insert a cast after the body with a coercion from the
result type to the output type of the definition. We slightly abuse the syntax
of vectors here for pairing the strategy arguments with their types ( f : st).
These strategy names are paired with their arity and those together with their
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type are put into the environment. Dynamically typed strategy arguments are
put into the environment with arity 0, which is relevant later in Figure 4.6 on
page 107.

For rule definitions [rdef] we check their input and output term expressions
against the type definition first, before we check the side-condition. This entails
that we may check variables in the output term that are bound in the side-
condition. The rules for terms in build position take this into account. Since
rules and strategies can be overloaded in the number of strategy arguments,
and these remain separate definitions at run-time, the types of these definitions
are associated to a pair of name and number of arguments.

strategies // [sdef] example
assert-Stat :: ? -> Stat
assert-Stat = id

// => assert-Stat = id; cast(Stat)

Strategies. We present an excerpt of the rules for strategy expressions in
Figure 4.4; the full set of rules is defined in Appendix B. The typing judgement
is Γ; t ⊢ s ⇒ s ⊣ Γ; t. These are the input context, type of the current term,
and a strategy expression, which are transformed to a strategy expression with
inserted casts, an output context, and the type of the current term after the
strategy expression.

The [match] rule defers to the type rules for term expressions. Term expres-
sions have a set of rules for match position and for build position. During a
match of a term expression, there can be parts that need to be tested with a
cast. Such casts are collected as a strategy expression, which is executed after
the match. We use syntactic sugar to bind the current term to fresh variable x,
and restore the current term value after the casts. The [build] rule defers to the
build position term expression type rules, where casts can be inserted inline
with some syntactic sugar.

For the strategy call we have two alternatives for typing. The [call1] and
[call2] rules are attempted in order, the first to succeed is used. The [call1] rule
looks up the strategy in the environment based on its name and arity. Then
it type-checks the strategy arguments, and finally it computes the coercion
required for the current type to match the input type of the found strategy. A
cast is inserted before the call with that coercion. Of course an implementation
of these rules may leave out the cast if the computed coercion is the identity
coercion. The [call2] rule attempts to find the strategy under the arity 0 with the
type ? in the environment. This is how strategy arguments are registered in the
environment, for an untyped strategy with strategy arguments. If found, the
environment is updated to reflect the discovered arity of the strategy argument.

The rules for calls work on vectors of arguments, and therefore need a form
of iteration over these vectors. We put an arrow over the turnstile of a rule to
denote that we map that particular rule over the vector arguments, and thread
the other parts (typically the environment). For example:

Γ1; ?, ? ⊢sa
⊢sa s1, s2 ⇒ s3, s4 ⊣ Γ3 ≡

Γ1; ? ⊢sa s1 ⇒ s3 ⊣ Γ2 ∧ Γ2; ? ⊢sa
⊢sa s2 ⇒ s4 ⊣ Γ3
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Build Terms. Terms in build position are checked against the expected result
type of the term (Figure 4.5). The resulting type is the type of the term that
was actually built, while the environment can contain new bindings for local
variables discovered in the term.

The rule for building string literals [bstring] defines that we can only have
string literal where the expected type is a subtype of strings. The only subtypes
of the built-in string type are aliases of the string type. The rule for type
ascription [bascr] checks that the ascribed type is a subtype of the expected
type, and propagates it to the subterm.

The rules for variables are again based on whether the variable was already
bound to a type in the environment. If so, in [bvar1] we compute a coercion
from the type of the variable to the expected type. We update the binding
of the variable and the resulting type to the greatest-lower-bound of the two
types. This can be done since the coercion to a subtype is only allowed if the
supertype is ?. In that we have discovered that after this build the variable
must be the more specific type or the cast failed that we insert. The inserted
cast uses syntactic sugar from the full Stratego language to be able to apply a
strategy during the build of a term and put the result of that application there.
If the variable that is built is not in the environment, rule [bvar2] is in effect,
which will record the discovered type information. This will typically occur
when we type-check the output term of a rule before the side-condition of the
rule binds the variable.

Constructors can be built in contexts where a dynamically or a statically
typed term is expected. The [bconstr1a] and [bconstr1b] rules handle the first
case. With a dynamically typed term expected we look up a constructor
of the right arity3, and in [bconstr1a] we handle the case where despite the
dynamically typed context, the child terms build the correct types for the
constructor. In that case we can return the static type of the constructor. When
the child terms do not build the correct types for the constructor, [bconstr1b]
returns the ill-formed type, which is only a subtype of ?. The [bconstr2] rule
is the statically typed term construction, where we find a constructor of the
right (sub)type for the expected output and require the child terms to have the
correct child types. These constructor rules show another judgement with an
adapted turnstile. In this case, with a bar over the turnstile, we have nothing
to thread, but we lift the judgement point-wise over the vectors.

strategies // [rdef,bconstr2,bvar1] example
exp-to-stat :: ? -> Stat
exp-to-Stat: maybe-exp -> Exp(maybe-exp)

// => exp-to-Stat:
// maybe-exp -> Exp(<cast(Stat)> maybe-exp)

Match Terms. Terms in match position are checked against the type of the
term they are matched against. The rules are mostly analogous to those of
build terms, and therefore elided here. For completeness, they are available in
Appendix B.

3We use slightly different ⟨⟨brackets⟩⟩ for this pair to visually distinguish it from the ⟨strategy⟩
pair.
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Build term typing Γ; t ⊢b e⇒ e ⊣ Γ; t

Γ1 ⊢ t2 ⇝ t1 : c t3 = t1 ⊓ t2

Γ1, x : t2; t1 ⊢b x ⇒ <cast(c)> x ⊣ Γ1, x : t3; t3
[bvar1]

Γ1; t1 ⊢b x ⇒ x ⊣ Γ1, x : t1; t1
[bvar2]

Γ1 ⊢ t1 <: string

Γ1; t1 ⊢b sl⇒ sl ⊣ Γ1; t1
[bstring]

Γ1 ⊢ t2 <: t1 Γ1; t2 ⊢b e1 ⇒ e2 ⊣ Γ2; t′2
Γ1; t1 ⊢b e1 :: t2 ⇒ e2 ⊣ Γ2; t2

[bascr]

len(e1) = j Γ1 = Γ′1, ⟨⟨ f , j⟩⟩ : t1 → t1

Γ1; ? ⊢b
⊢b e1 ⇒ e2 ⊣ Γ2; t2 Γ2 ⊢ t2 <: t1

Γ1; ? ⊢b f (e1)⇒ f (e2) ⊣ Γ2; t1
[bconstr1a]

len(e1) = j Γ1 = Γ′1, ⟨⟨ f , j⟩⟩ : t1 → t1 Γ1; ? ⊢b
⊢b e1 ⇒ e2 ⊣ Γ2; t2

Γ1; ? ⊢b f (e1)⇒ f (e2) ⊣ Γ2; ill-formed
[bconstr1b]

len(e1) = j Γ1 = Γ′1, ⟨⟨ f , j⟩⟩ : t1 → t1

Γ1; ? ⊢b
⊢b e1 ⇒ e2 ⊣ Γ2; t2 Γ2 ⊢ t1 <: t0 Γ2 ⊢ t2 <: t1

Γ1; t0 ⊢b f (e1)⇒ f (e2) ⊣ Γ2; t1
[bconstr2]

x Figure 4.5 Algorithmic typing rules for the core Stratego terms in build
position. Alternative rules are tried in order.

Strategy argument typing Γ; st ⊢sa s⇒ s ⊣ Γ

Γ1 = Γ′1, ⟨ f , 0⟩ : ? Γ1 ⊢ ?⇝ t2 : c

Γ1; (st1) t1 → t2 ⊢sa f ()⇒ proxy(id|id, c| f ()) ⊣ Γ1
[saref1]

Γ1 = Γ′1, ⟨ f , 0⟩ : (st2) t3 → t4 Γ1 ⊢ st1 ⇝ st2 : sc1
Γ1 ⊢ t1 ⇝ t3 : c1 Γ1 ⊢ t4 ⇝ t2 : c2

Γ1; (st1) t1 → t2 ⊢sa f ()⇒ proxy(sc1|c1, c2| f ()) ⊣ Γ1
[saref2]

Γ1; t1 ⊢ s1 ⇒ s2 ⊣ Γ2; t3 Γ2 ⊢ t3 ⇝ t2 : c

Γ1; () t1 → t2 ⊢sa s1 ⇒ proxy(|id, c|s2) ⊣ Γ2
[sa]

x Figure 4.6 Algorithmic typing rules for strategy arguments in a call. Altern-
ative rules are tried in order.
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Strategy Arguments. Strategy arguments require special care (Figure 4.6).
These arguments become closures, and if we add casts before we close over
them, these casts will become invisible to the strategy that receives the argu-
ments. A strategy argument that is passed around a few times can accumulate
a number of casts, creating new closures for the cast and call sequence every
time. This problem was identified and solved by Herman, Tomb and Flanagan
(2010), by constructing special values containing the casts and the passed func-
tion. The values are called proxies, and they can be introspected at run-time.
When creating a proxy directly around another proxy, no new proxy needs to
be allocated. Instead the coercions are merged into the existing proxy. This
saves memory, and also means that some of the dynamic type checks happen
at that time, instead of when the proxy is executed.

In this core language, strategies have two kinds of arguments, the default
term argument, and strategy arguments. Proxies save the coercions for the
extra arguments, a coercion for input and output, and the strategy argument
itself. The [saref1] rule handles strategy arguments that are a reference to
dynamically typed strategies, [saref2] handles references to statically typed
strategies (n.b. contravariance on the return type coercion), and [sa] handles
other strategy expressions. Arbitrary strategy expressions need to become
closures regardless of proxy objects. We can require the strategy expression to
handle the exact type that it will receive as a strategy argument, but we still
save the coercion on the return value in a proxy, so it is accessible at run-time.

Refer back to Listing 4.11 on page 100 for an example of proxy insertion.

4.4.3 Polymorphism, Parametricity, and TP

We have purposefully not discussed support for polymorphism in the type
system so far. The language features of this core subset of Stratego have enough
moving parts already. In this subsection we list the modifications to the type
system that handle polymorphism. The environment now additionally holds
pairs of type variables α and their type. Top-level definitions now have type
schemes so the type variables can be made fresh at lookup time. Definitions
register strategy arguments as definitions without type schemes. The subtyping
relation binds unbound type variables to the sub- or supertype they are
compared to. Casts can only be inserted for types without type variables. No
coercions can be used to a type that has an unbound type variable or a type
variable from the type scheme of the definition. The latter restriction is due to
type erasure in the runtime of Stratego.

Parametricity. Typical Stratego code can inspect any term with a match
strategy or a rewrite rule. This means that, if allowed, Stratego code could
inspect terms that are polymorphic in the strategy type. This would violate
parametricity, the guarantee that terms of polymorphic type cannot be decon-
structed, but it fits the style of Stratego programs rather well. Therefore we
chose not to guarantee parametricity in the type system. Type variables from
the type scheme of the definition receive special treatment, where they behave
as ? throughout the definition, since the definition can be instantiated with
dynamic types for the type variables.
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step(|state): IADD() -> <pop(|2); push(|r); next> state
where

<top(|2)> state => [Int(v1), Int(v2)]; <addS> (v2, v1) => r

x Listing 4.13 An example of a step rule in the Jasmin interpreter.

Type Preserving. The special type preserving type is an important piece of
the puzzle to type generic traversals and reduce the number of casts inserted
around generic traversals. TP may seem to be simply a -> a, but there are three
key differences. The first is that TP provides a limited form of higher-rank
types. The second is that while parametrically polymorphic strategies may be
called with terms that are dynamically typed and possibly ill-formed, a type
preserving strategy must be called with a statically typed term. The third is
that a type preserving strategy must either return the given term, call a type
preserving strategy on it, or inspect the term with a pattern match or type test.
In other words, we cannot call a typed strategy with the input term unless
the type of the term has been inspected. We do not insert casts to assert its
type as we do for polymorphic strategies, as a type preserving, heterogenous
strategy should be useable in a generic traversal that tries to apply the strategy
everywhere in a tree. When the strategy is not applicable, it should produce a
match failure, not a cast error, otherwise the generic traversal mechanism does
not work.

4.5 Evaluation

By design of the type system, the following requirements from Section 4.3.1
were met: existing programs are accepted without annotations, generic tra-
versals are supported in both statically and dynamically typed code, we only
needed to add minimal (top-level) type annotations which preserves Stratego’s
concise style, and the types can be modularly checked for integration with the
incremental Stratego compiler.

In this section we evaluate the requirement that we can migrate code from
untyped to typed. To do so, we have implemented a stand-alone prototype
type checker for Stratego, and used it to type-annotate the pre-existing Stratego
code of a Spoofax programming language project. This project is Jasmin, a
Java Byte Code assembler language (Meyer and Downing 1997). In particular,
the project implements the JasminXT version of the language as defined by
Reynaud (2006). The Jasmin language project is used in a compiler construction
course, where students transform MiniJava to Jasmin, and then use the Jasmin
definition to compile to bytecode files. As a result, the part of the codebase
that does compilation is well-exercised. Another part of the codebase, a Jasmin
interpreter written in Stratego, is not used in the course. The interpreter defines
signatures for a state of the JVM and a step rewrite rule that rewrites the state
based on a Jasmin instruction. A program is then a list of instructions, which
can be executed over the empty state. Listing 4.13 shows a simple step rule that
does integer addition by manipulation of the JVM operand stack and addition
provided by Stratego.
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top(|n) = ?JBCState([JBCFrame(_, _, _, JBCStack(<take(|n)>), _)|_], _)
top = top(|1)
Typed and corrected to:
top(|int) :: State -> List(Value)
top(|n) = ?JBCState([JBCFrame(_, _, _, JBCStack(<take(|n)>), _)|_], _)
top :: State -> Value
top = top(|1); \[head] -> head\

x Listing 4.14 A bug found by adding types and inspecting errors. The top
strategy with term argument gives the first n values on the stack, whereas
the top strategy without argument should give the top value (given how it
was consistently used) but instead gave a singleton list with the top value.

The Jasmin codebase contains 3253 lines of manually written Stratego code
divided over 36 files. We do not count blank lines and comments, nor generated
constructor signatures from the grammar. There are 49 manual definitions
of constructor signatures for intermediate representations, and 146 named
strategies/rules (counted by unique name).

Changes and Bugs. During our evaluation we added 74 type signatures of
standard library strategies that are used in the code, and 117 type signatures to
the code of the project. In general, we find that the compilation of Jasmin (the
well-exercised part) is free of type errors and is mostly written with a static
typing discipline. Most type-annotated strategies (85 out of 117) can be given
a static type without use of the dynamic type. Some of the manually defined
constructors do not have correct types which was not checked before.

The interpreter clearly has not seen testing. We found numerous type-related
bugs, such as inconsistent use of integers and strings containing integers, a
pattern match one constructor too shallow for the case that was handled, and
the use of the wrong strategy which gives back a list instead of an element
from the list. Another example is given in Listing 4.14. Most strategies and
rules were written with static type discipline in mind. This part did have
some overloading (which could be split for static typing) as well as a messy
combination of constructors from the Jasmin AST and a newly introduced
intermediate representation without a combining supertype. The interpreter
‘step’ rewrite rule also takes explicitly ill-formed terms, variants of the defined
terms where all strings with numbers are replaced by integers.

Interpretation and Conclusion. We conducted a small experiment that shows
that using the gradual type system is useful to guide the transition to a system
with a better type discipline. In a codebase which was written with some
type discipline in mind, this was an exercise in understanding the existing
code and adding type annotations. In some cases a small refactoring was easy
enough to do and resulted in well-typed strategies. In the process we found
that previously added type annotations helped us find the right annotations
for the next strategy, and the type system helped us find some mistakes made
when originally guessing the type annotation for a strategy. This reassured us
that we were indeed adding a consistent set of type annotations to the code.
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A noteworthy exception to the smooth experience was the interpreter ‘step’
rewrite rules. This part of the code was written on an intermediate representa-
tion that looked very close to the defined constructors, but with some amount
of desugaring and preprocessing. This intermediate representation was close
to the original representation, but with small changes consistently applied
on a larger number of constructors. Writing the signatures for this would be
tedious, and we did not do this as part of the case study. We are not yet sure if
this situation is a good argument for our gradual types, a programming style
we should discourage in future Stratego code, or if we should add language
support for defining these types of intermediate representations more easily.

4.6 Related Work

Dynamically Typed Strategies. The ELAN language introduced rewrite systems
with labeled rules that could be invoked from strategies (Borovanský et al. 1998).
Luttik and E. Visser (1997) extended these strategies with modal operators (all,
one) for generic traversal. E. Visser, Benaissa and Tolmach (1998) used this
as the basis for the design of Stratego. E. Visser and Benaissa (1998) define
System S, a core language with operational semantics for rewriting, with
matching and building as primitive operations. E. Visser (1999) demonstrates
the use of strategies for strategic pattern matching to dynamically check the
(type) structure of terms, e.g. to recognise subsets of a type schema.

Stratego is applied in the Stratego/XT (Bravenboer, Kalleberg et al. 2008)
transformation tool suite and the Spoofax language workbench (Kats and
E. Visser 2010) for the definition of program normalisation (Bravenboer and
E. Visser 2004), type checkers (Hemel, Groenewegen et al. 2011), program
analyses (Bravenboer, van Dam et al. 2006), code generators (Kats, Bravenboer
and E. Visser 2008), and more. Chapter 3 introduced an incremental compiler
for Stratego.

Erdweg, Vergu et al. (2014) introduce typesmart constructors, smart con-
structors that dynamically check type-correctness of constructed terms. They
integrate support for typesmart constructors in the Stratego runtime. Their
approach is all-or-nothing, requiring all intermediate values to be well-typed,
which precludes the dynamic typing scenarios of Section 4.2.

Statically Typed Strategies. Typing strategies was pursued by Lämmel and
J. Visser (2002) in the context of the Strafunski Haskell library for generic
programming inspired by Stratego (Lämmel and J. Visser 2003). They identified
the concepts of type preserving and type unifying strategies. Lämmel (2003)
formalises these with the TP and TU(b) types in a type system for System S (E.
Visser and Benaissa 1998). We have adopted the TP type, but have opted
to model type unifying strategies with type dynamic as ? -> b. SYB is a
design pattern encoding the statically typed fragment of Stratego’s strategies
in Haskell (Lämmel and Jones 2003), using type classes and higher-rank
polymorphic functions to provide type transformations (type-preserving) and
queries (type-unifying) on arbitrary data, made usable by deriving instances
of the type classes automatically.
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Gradual Types. The term gradual types was introduced by Siek and Taha
(2006) in a paper that adds optional type annotations to simply-typed lambda
calculus, by an orthogonal extension with a consistency relation. This work
kicked off a new line of research in adding gradual types to many different
type systems and languages, entirely too many to enumerate here. As noted
earlier in the paper, we took the work of Herman, Tomb and Flanagan (2010) to
heart and applied it in our type system. This work introduces proxies as special
closures that can be introspected at run-time to add more coercions to the
input and output. This solves a space leak from adding normal closures with
casts around a function when it is passed back and forth between statically
and dynamically typed higher-order functions.

Xie, Bi and Oliveira (2018) describe a gradual, higher-kinded polymorphic
type system that guarantees parametricity, and manages to keep gradual types
orthogonal from subtyping induced by polymorphic functions. This work gave
us confidence that our type system with limited higher-kinded polymorphism
without parametricity (TP) would be possible too. We took inspiration from
their notation for algorithmic typing rules. We differ from the research into
gradual types in functional type systems, which typically have a separate
consistency relation for gradual types which is orthogonal to the rest of the
type system. Our approach to subtyping and cast computation is very close to
the pessimistic and optimistic subtyping of Muehlboeck and Tate (2017).

Dynamic Rewrite Rules. In this chapter we have not considered the extension
of Stratego with scoped dynamic rewrite rules (Bravenboer, van Dam et al. 2006),
which are used to define context-sensitive transformations such as type check-
ing (Hemel, Groenewegen et al. 2011), function inlining (E. Visser 2001a), and
transformation based on data-flow analysis (Olmos and E. Visser 2005). Such
rules are dynamic in the sense that new rule instances are added at run-time.
With respect to static typing, such dynamic rules can be type checked with the
type system from this chapter. When dynamic rules have type dynamic their
outputs may be checked at run-time. When dynamic rules have a static type
annotation their definitions and applications are checked like regular rewrite
rule definitions. So, while the behaviour of dynamic rules is dynamic their
typing is static.

4.7 Conclusion

We have introduced the design of a gradual type system for Stratego with a
series of idiomatic examples, and presented a formal definition of the type
system for Core Gradual Stratego. This type system can statically type many
stratego programs, including type preserving and type unifying generic traver-
sals. The gradual types support partially dynamically typed Stratego programs
and provide a migration path for existing dynamically typed Stratego code.

To evaluate the implementation of our type checker, we demonstrated this
migration path on an existing Stratego codebase, and find it works rather well.
What is left to future work is investigating whether we need more language
support for easily defining the types of intermediate representations, and
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to experimentally evaluate the overhead of the casts that our type checker
inserts. We also hope to track more properties statically, such as partiality of
strategies and boundedness of variables, and use all this static information for
optimisations in the back-end of the compiler.

A final word of warning for those who wish to implement a type checker
for gradual types: The silent insertion of casts can easily hide bugs in your
type system when you write small programs for exploratory testing. So test
profusely, including the results after cast insertion.
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Chapter 5

Optimising First-Class Pattern Matching

Abstract. Pattern matching is a high-level notation for programs to analyse the shape
of data, and can be optimised to efficient low-level instructions. The Stratego language
uses first-class pattern matching, a powerful form of pattern matching to which traditional
optimisation techniques cannot be applied directly.

In this chapter, we investigate how to optimise programs that use first-class pattern
matching. Concretely, we show how to map first-class pattern matching to a form close
to traditional pattern matching, on which standard optimisations can be applied.

Through benchmarks, we demonstrate the positive effect of these optimisations on
the run-time performance of Stratego programs. We conclude that the expressive power
of first-class pattern matching does not hamper the optimisation potential of a language
that features it.

Based on: Jeff Smits, Toine Hartman and Jesper Cockx (2022). ‘Optimising First-Class Pattern
Matching’. In: Software Language Engineering (SLE), Proceedings, pages 74–83. doi: 10.1145/
3567512.3567519

https://doi.org/10.1145/3567512.3567519
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5.1 Introduction

Pattern matching is a fundamental tool for expressing programs by case analy-
sis, and is used in functional programming, term rewriting, logic programming,
and more.

In many languages, pattern matching is expressed through case expressions,
which combine matching, variable binding, and control flow in a single con-
struct. In contrast, first-class pattern matching (E. Visser and Benaissa 1998)
breaks apart these concepts into three separate constructs.

For example, Listing 5.1 shows a case expression in OCaml, and the same
expression in Stratego (E. Visser 2001b; Bravenboer, Kalleberg et al. 2006;
Bravenboer, Kalleberg et al. 2008) using first-class pattern matching. The
match expression ?pattern matches the pattern against an implicit scrutinee,
the ‘current term’, and either continues with pattern variables bound or fails.
Scoping {n* : S} binds the variables n* locally for use in patterns and expres-
sions. Finally, the choice operator fst <+ alt runs the first argument and tries
the alternative in case it fails. Because Stratego has these separate concepts,
backtracking from a failed pattern match is a core feature of the semantics.

Programs that use case expressions can be compiled into a decision tree (Au-
gustsson 1985; Maranget 2008) or an automaton (Gräf 1991; Maranget 1994;
Nedjah, Walter and Eldridge 1997; Fessant and Maranget 2001), which can be
optimised by reordering branches and arguments. However, these techniques
do not apply directly to first-class pattern matching, as matches are spread out
in the program. As a consequence, they are not used in Stratego, hurting the
run-time performance of Stratego programs.

Our main contributions are the following:
• We demonstrate the mismatch between common pattern match optimisations

and first-class pattern matching by example (Section 5.3).

• We describe an intermediate representation (IR) for Stratego that resembles
case expressions, and show how to transform Stratego programs to this IR
(Section 5.4).

• We evaluate our IR and optimisation with a prototype implementation in the
Stratego compiler, benchmarking to two different workloads (Section 5.5).
We starts with an introduction to Stratego in Section 5.2.

5.2 A Short Introduction to Stratego

Stratego (E. Visser, Benaissa and Tolmach 1998) is a gradually typed (see
Chapter 4) term rewriting language with programmable rewrite strategies.
The terms that are rewritten are ATerms (van den Brand, de Jong et al. 2000),
whose sorts and constructors can be defined in Stratego. There is an open
world assumption, i.e. Stratego assumes that there may be more constructors
and sorts than are defined.

Stratego has syntactic sugar over a core language that strongly resembles Sys-
tem S (E. Visser and Benaissa 1998), a core calculus for rewriting and strategies.
The Stratego core grammar is shown in Figure 5.1 and defines identity and
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let calc n = match n with
| Plus (S m, n) -> S (Plus (m, n))
| Minus (n, O) -> n
| Minus (S m, S n) -> Minus (m, n)
| Minus (O, S _) -> failwith "oops";;

Calc = {m, n: ?Plus( S(m), n ); !S(Plus(m, n)) }
<+ {n : ?Minus(n , O() ); !n }
<+ {m, n: ?Minus(S(m), S(n)); !Minus(m, n) }
<+ ?Minus(O() , S(_)); fatal-err(|"oops")

x Listing 5.1 A case expression in OCaml (top) and Stratego (bottom) with
four branches, demonstrating matching, scoping, and choice operators in
Stratego.

S ::= id fail identity and failure
S ; S sequence
{ n: S } scope
?T !T match and build
S < S + S guarded choice

T ::= n variable
l literal
n(T) constructor

x Figure 5.1 Stratego core grammar.

failure strategies, sequences, lexical scopes for term variables, match and build,
and guarded choice. Matching and building is done on term patterns, which
includes variables, literals, and constructors and their arguments.

The semantics of these strategies and terms is defined in Figure 5.2 on
page 119. For a full explanation of these rules see the System S paper (E. Visser
and Benaissa 1998). We will only go over the highlighted rules that pertain to
first-class pattern matching. Each rule takes a pair of the store and the ‘current
term’, where the store keeps local variable bindings to values. The rule applies
the strategy on the arrow to produce another pair of store and term. The result
on the right-hand side of the arrow may also be failure (the ↑).

The first two highlighted rules describe scoping behaviour. A list of fresh
variables of a scope are removed from the store for execution of the body of the
scope, then bindings of those variables from before the scope (St|x) are added
again, while preserving other bindings from the body of the scope. Failure in
the scope body is propagated.

The next three rules are part of the semantics for matching, in particular
matching a variable. An unbound variable is bound in the store. A bound
variable’s binding is compared against the current term, failing if they differ.
This provides for non-linear pattern matching semantics in Stratego.

The final four rules are for the guarded choice: Whether the guard (first
strategy) fails decides which of the second and third strategy is evaluated. This
can result in local backtracking of variables: In the last rule, the failed guard s1
causes s3 to be evaluated on the original store St, without bindings from the
partial execution of s1.
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Our main point here in looking at the semantics of the core of Stratego, is how
pervasive first-class pattern matching is to a language design. Because of the
use of backtracking, every construct of the language needs to take ‘failure’ into
account. At the same time backtracking provides the opportunity for a different
code style in Stratego than in a typical functional programming language.
An alternative result (‘fail’) is always available, without the requirement to
explicitly propagate that failure, as it freely bubbles up to the nearest point
where a choice catches it.

Separate matching and scoping have their own benefits. A typical use case
is found in the Stratego standard library strategy fetch-elem(s). This strategy
returns the element in a list for which the strategy parameter s matches. It can
be implemented as follows:

fetch-elem(s) =
is-list; one(s; ?x); !x

What this code does is (1) test that the input term is a list, (2) use a generic
traversal primitive1 to visit the list elements, attempting to apply the strategy
parameter until it succeeds on one of the list elements, and (3) build variable x
to return its binding as the result of fetch-elem. Notably, the strategy parameter
to the generic traversal attempts to apply s and if it succeeds it binds the result
to x. The resulting list is ignored as we have found what we wanted during the
traversal and bound it to a variable that is scoped outside of the traversal by
fetch-elem. This trick can be applied to much deeper traversals than a single
list, allowing easy extraction of information without result tuples everywhere.

5.3 Pattern Matching Optimisation and First-Class Pat-
tern Matching

The naive way to execute pattern matching of a case expression would be to
attempt each branch of the case expression in isolation. For example, when
executing the OCaml calc function from Listing 5.1 on Minus (S O, S O), the
naive method would: (1) fail to match the first pattern because the outermost
constructor does not match, then (2) attempt to match the second pattern,
match the outermost constructor, but fail to match on the second argument,
then (3) attempt to match the third pattern, matching the outermost constructor
again, which already demonstrates the naivety. Each pattern is tested in
isolation, even when we know the outmost constructor from the previous
branch. Pattern matching optimisation techniques leverage the information
gathered by previously tried branches to make pattern matching faster.

In Stratego the execution method for the code in Listing 5.1 is the naive
method described just now. Even if we wrote more high-level rewrite rules
that looked more like the OCaml code, it would still desugar to the Stratego
code in Listing 5.1. And the desugared code definitely tests each pattern in
isolation during a separate first-class pattern matching operation.

1This is a central feature of Stratego for its programmable rewrite strategies, for more on this,
see E. Visser and Benaissa (1998, § 2.3).
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Strategy S applied to store St and term T St; T S
S St; T

St; t id
id St; t St; t fail

fail ↑

St; t s1
s1 St′; t′ St′; t′ s2

s2 St′′; t′′

St; t s1; s2
s1; s2 St′′; t′′

St; t s1
s1 St′; t′ St′; t′ s2

s2 ↑

St; t s1; s2
s1; s2 ↑

St; t s1
s1 ↑

St; t s1; s2
s1; s2 ↑

St \ x; t ss St′; t′

St; t {x : s}
{x : s}

(St′ \ x) ∪ (St | x); t′

St \ x; t ss ↑

St; t {x : s}
{x : s}

↑

x /∈ Dom(St)

St; t ?x
?x St∪ {x 7→ t}; t

St(x) = t

St; t ?x
?x St; t

St(x) ̸= t

St; t ?x
?x ↑

St0; t1 ?t′1
?t′1

St1; t1 . . . Stn−1; tn ?t′n
?t′n

Stn; tn

St0; f (t1, . . . , tn) ? f (t′1, . . . , t′n)
? f (t′1, . . . , t′n)

Stn; f (t1, . . . , tn)

f ̸= g ∨m ̸= n

St0; g(t1, . . . , tm) ? f (t′1, . . . , t′n)
? f (t′1, . . . , t′n)

↑
t = l

St; t ?l
?l St; t

t ̸= l

St; t ?l
?l ↑

vars(t2) ⊆ Dom(St)

St; t1 !t2
!t2

St; St(t2)

vars(t2) ⊈ Dom(St)

St; t1 !t2
!t2 ↑

St; t s1
s1 ↑ St; t s3

s3 ↑

St; t s1 < s2 + s3
s1 < s2 + s3 ↑

St; t s1
s1 St′; t′ St′; t′ s2

s2 St′′; t′′

St; t s1 < s2 + s3
s1 < s2 + s3 St′′; t′′

St; t s1
s1 St′; t′ St′; t′ s2

s2 ↑

St; t s1 < s2 + s3
s1 < s2 + s3 ↑

St; t s1
s1 ↑ St; t s3

s3 St′; t′

St; t s1 < s2 + s3
s1 < s2 + s3 St′; t′

x Figure 5.2 Stratego core operational semantics. ↑ is failure. Some rules for
first-class pattern matching are highlighted.
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Note that first-class pattern matching is not an intermediate representation
used by compilers or publications for the description of Stratego’s semantics,
this is part of the language and actually used by the end user. A common
pattern in Stratego is to have a ruleset where some rewrite rules match a
different pattern but have otherwise the same logic and result. To remove
this code duplication, we can use the core operations like match, choice, and
build to write a single strategy that matches both patterns. For example, if
we compute the pessimistic time complexity of a language with normal and
parallel for loops we see some code duplication:

max-complexity: For(i, lo, hi, b) -> <subtS> (hi, lo)
max-complexity: ForPar(i, lo, hi, b) ->

<subtS> (hi, lo)

We can remove this code duplication using first-class pattern matching:

max-complexity =
(?For(i, lo, hi, b) <+ ?ForPar(i, lo, hi, b))

; <subtS> (hi, lo)

In general, we cannot expect all Stratego code to match case expression style
code as closely as the example in Listing 5.1. In other words, the information
that is close together in a match case expression, can be farther apart in Stratego
code, and not readily available to fuel optimisation. In this chapter, we will
tackle the general problem of optimising first-class pattern matching.

5.4 A Stratego Compatible Case Expression

Pattern match optimisation is a well researched problem in the context of
functional programming and case expressions (Cardelli 1984; Baudinet and
D. MacQueen 1985; Augustsson 1985; Schnoebelen 1988; Gräf 1991; Sekar,
Ramesh and Ramakrishnan 1995; Nedjah, Walter and Eldridge 1997; Maranget
2008). The key idea of our work to find a comparable construct that interacts
well with Stratego’s backtracking semantics, and translate first-class pattern
matching to that construct. Once we have a clear list of branches, we can
reuse previous pattern match optimisation ideas, adapting them to Stratego’s
execution model with local backtracking.

We first look at Stratego code that we can easily translate, to find out what
minimum requirements there are for our case expression construct in Stratego.
Listing 5.1 shows an already desugared form of rewrite rules. This core
Stratego code is a regular structure of a chain of choices, where each guard is
a scoped expression starting with a match. These matches should become the
left-hand sides of our case expression branches. Our construct also needs to be
able to introduce variables like the scopes, have right-hand sides for the builds,
and guards in case anything fails and other (overlapping) patterns need to be
tried. An example of the case expression that complies with these requirement
is displayed in Listing 5.2.

Each branch has some local variables to scope, a pattern, a right-hand side,
and optionally a guard. As you can see, the right-hand side of the last case
statement is the identity strategy. All the logic is put into the guard of the
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Calc = match sequential
case m, n | Plus(S(m), n): S(Plus(m, n))
case n | Minus(n, O()): n
case m, n | Minus(S(m), S(n)): Minus(m, m)
case | Minus(O(), S(_))

when fatal-err(|"Negative result"): id
end

x Listing 5.2 A case expression version of Listing 5.1.

match sequential
case xs | t_0

when s_1: s_2
// more cases

end

⇒
{xs: ?t_0; s_1 < s_2 +
match sequential

// more cases
end }

match sequential
// empty

end
⇒ fail

x Listing 5.3 Naive semantics for case expressions by transformation to Stratego
core.

match, where, if anything fails, we can backtrack to another case. This is a
Stratego interpretation of the concept of guards, where failure rather than a
boolean value governs the behaviour. In later sections we will see how these
guards play a key role in translating first-class patterns to case expressions
despite Stratego’s backtracking semantics.

The naive semantics of our case expression can be shown through a trans-
lation back into Stratego core shown in Listing 5.3. A pattern match on term
t_0 and guard s_1 decide whether we evaluate RHS s_2. It is naive because
evaluation on e.g. Plus(O(), O()) would still try each pattern and fail every,
whereas the ideally we would fail to match in just two steps, matching the outer
Plus constructor and finding the O() as the first child. For the optimisation
of case expression patterns, we can exploit overlap and mutually exclusive
patterns to get this behaviour. This can be visualised as a matching automaton,
exemplified in Figure 5.3. Each intermediate node is labeled with the path into
the term that is matched. The Λ is the empty path denoting the root term, and
p.n is the (0-indexed) nth child of the term denoted by the path p. Each edge is
labeled with the constructor or value matched against. The final nodes of the
automaton refer to the nth branch of the case expression.

Λ Λ .1

Λ .0 1st

2nd

Λ .0 3rd

4th

Plus/2

Minus/2

S/1

O/0

S/1

S/1

O/0

x Figure 5.3 Optimised match automaton for the running example.
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s1 < s2 + s3 ⇒
match sequential

case | _ when s1: s2
case | _ when s3: id

end

x Listing 5.4 Transformation of guarded choice to case expression.

case xs | _ when {ys: ?p; s1}: s2 ⇒ case xs, ys | p when s1: s2

x Listing 5.5 Extracting a match from a case expression guard.

5.4.1 Translation into Case Expressions

In order to have a small set of transformations, we defined our translation on
Stratego core. While our examples are edited for legibility, Stratego core as
generated by the compiler through desugaring makes every variable globally
unique and explicitly scoped. We will therefore not concern ourselves with
name conflicts and capture-preserving substitution for this translation.

Choices to Cases. The simplest transformation of guarded choices to case
expressions is given in Listing 5.4. Without knowing anything about the
strategies used in the choice, we can safely put s1 into the guard for the first
branch and s2 into the right-hand side. s3 ends up in the second branch, where
either the guard or the right-hand side would work. We choose the guard here
because it interacts better with the next transformations.

Match Extraction. In order to take advantage of optimisations for case expres-
sions, we need to have patterns in each branch of course. So once we have
case expressions, we can start extracting patterns from the guards, as shown in
Listing 5.5. Here we have the most general case where a branch already scopes
variables xs, and the guard scopes variables ys, which are combined in the
result. As long as the guard then starts with a match, while the branch pattern
is a wildcard, we can move the pattern from guard to branch. If anything
occurs after that in the guard (s1), that stays. And the RHS (s2) stays as well, it
is not affected by this transformation.

RHS Extraction. Apart from identifying the pattern match in the guard, we
can see if the guard is redundant. If we can statically guarantee that the guard
always succeeds, it might as well be put into the RHS. A simple local analysis
of the guard is enough to find the typical simple cases, such as the build of a
term where all variables in the term are guaranteed to be bound.

Flattening. Since guarded choices are a nested structure, our case expressions
are also nested in the guards of case expressions at this point. In order to
flatten this structure, we define a transformation that flattens a case expression
in the guard of another case expression in Listing 5.6. The local strategy s
that is introduced provides some amount of code sharing, at the expense of
creating and calling a closure. This can be avoided by treating these local
strategies specially as part of the shared tail in the matching automaton during
optimisation of the case expression, although our current prototype does not
do so.
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match sequential
/* other branches */
case xs | _ when

match sequential
case ys | p1 when s1: s2
case zs | p2 when s3: s4
/* more branches */

end: s5
end

⇒

let s = s5
in

match sequential
/* other branches */
case xs, ys | p1 when s1; s2: s
case xs, zs | p2 when s3; s4: s
/* more branches with extended

guard and RHS s */
end

end

x Listing 5.6 Transformation of nested case expressions to a flat case expression.

5.5 Evaluation

To evaluate our pattern match optimisation, we have implemented a prototype
optimisation and included it into a fork of the Stratego compiler. This prototype
is limited to generating decision trees rather than automata, and therefore
generates duplicate code. But it should still result in improved run time
performance. To evaluate this optimisation, we benchmark some Stratego
program executions with and without the optimisation. Before we test the
performance, we first test the implementation to be behaviour preserving. At
the end of this section we consider threats to the validity of our results. We
aim to answer the following questions:

RQ1. Does the optimisation improve run time performance of Stratego pro-
grams?

RQ2. Is there overhead for small matches?

RQ3. Is the optimisation effective in practice on “normal” code bases?

RQ4. What is the relative compile time cost of the prototype optimisation?

5.5.1 Correctness

For behaviour preservation testing, first we use the compiler test suite and
make sure all the tests succeed with optimisation on. This compiler test suite
numbers 159 tests and was also used in the past to migrate the compiler back-
end from C to Java without breaking any edge cases in program behaviour.
Then, we added 14 tests that explicitly cover situations that are affected by our
optimisation. These all succeed with our current prototype.

We also run the modified Stratego compiler with and without the optimisa-
tion on, on the set of benchmark programs used for performance evaluation
below, comparing the computed result.

5.5.2 Performance

For our performance evaluation we describe our benchmark setup, and the
subjects on which we run our benchmark before discussing the results for each
of the subjects.
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Environment. We ran our experiments on a Macbook Pro (Early 2013) with
an Intel Core i7 2.8 GHz CPU, 16 GB 1600 MHz DDR3 RAM, and an SSD. The
machine is running Mac OS 10.14.5, Java OpenJDK 1.8.0_212, and Docker 4.9.1
(81317).

Subjects. We use algorithmic rewriting problems of the Rewriting Engine
Competition (REC) (Durán et al. 2010). These problems are generated from
the REC language, and can be translated into up to 18 different languages for
comparison of rewriting engines. There are problems for sorting (bubble sort,
merge sort, quick sort), numeric functions (Fibonacci, factorial, prime sieve of
Erastosthenes), and other kinds of problems. The ‘algorithmic’ problems are
expressed as abstract syntax of programs and rewrite rules that do a small-step
interpretation of that abstract syntax.

The REC programs are not typical programs as would be written in Stratego
by hand, which is acknowledged in Durán et al. (2010, § 4.1). Therefore, like
Durán et al., we also use a program-transformation problem set based on the
Tiny Imperative Language (TIL) (Cordy 2009).

Data Collection. We use the Java Microbenchmark Harness (JMH) to manage
the warm-up of the Java Virtual Machine (JVM), preparing the benchmarks,
and repeating runs with different parameters. We used Single shot time as the
benchmark mode, with 5 warm-up iterations and 5 measurement iterations in
two forks of the virtual machine.

REC. Most programs from the REC subject show a significant speed-up,
while none slow down due to our optimisation. We show two examples in
Figure 5.4, both of which show that we can answer RQ1: our optimisation does
improve run time performance of Stratego programs. The factorial program
is interesting because it has a small match of six different branches, and yet
there is a clearly visible run time improvement. Therefore we conclude that, as
expected, there is no overhead for small matches (RQ2).
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simple addition program.

TIL. We included TIL for RQ3 to see what impact our optimisation has on a
more typical Stratego program that does program-transformation. Figure 5.5
shows that whether we run Stratego code that optimises TIL programs (left) or
executes them through big-step transformations (right), there is a small but
clear speed-up from our pattern match compiler. This is visible due to our
generated large TIL input programs that read one integer, add one to it and
put it in a new variable, repeated some number of times, then write the result:

var n0; n0 := readint();
var n1; n1 := n0 + 1; // repeated...
write(n500); // ... e.g. 500 times

Compilation Time. Figure 5.6 shows that compilation times (RQ4) for REC
problems show that our prototype optimisation increases the compilation time
of the Stratego compiler, which makes sense as these programs largely consist
of rules that the optimisation works on. For the total compile time of the TIL
language project, the impact is milder due to smaller rulesets and a larger
amount of other compilation work, between 9.68 % and 11.97 % of the median
of the baseline. We think that at the current increase of compilation time, the
optimisation is worthwhile to include in the main Stratego compiler, with the
option to turn it off.

5.5.3 Threats to Validity

We consider generalisability of the results (external validity), factors that allow
for alternative explanations (internal validity), and suitability of metrics for
the evaluation’s goals (construct validity).

External Validity. The results of our evaluation are specific to our implement-
ation for the Stratego language. They are merely a datapoint for the general
argument that pattern match optimisation can be used on first-class pattern
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matching. Within Stratego, we have attempted to provide a good range of
styles of Stratego programs by using not only the algorithmic problems from
REC but also a more typical use of Stratego with TIL.

Internal Validity. A typical alternative explanation for why an optimisation
performs well is that it actually removes relevant code and breaks semantics
preservation. We have already addressed this concern in Section 5.5.1.

Another explanation would be that we misconfigured our measurements,
which we did at one point: we got entirely similar results for our benchmarks
because the optimisation was not actually applied in either measurement. We
were able to manually inspect the compilation results and notice this though,
so we checked that in situations where results are similar.

We used the newest Stratego compiler for our measurements, and our
prototype is built on this new compiler. This compiler was designed to be
highly incremental, and to achieve this, inlining of strategies was removed.
For first-class pattern matching this can be a limitation as a strategy might
be defined by choices between differently labeled rewrite rules, but these
are optimised separately when not inlined. In our benchmarks we partially
mitigated this by manually inlining these code patterns.

Construct Validity. As the experiments are performed in a virtualised environ-
ment (Docker), the absolute numbers of our measurements may include some
virtualisation overhead. However, the overhead is in all measurements, where
we compare between two measurements rather than interpret the absolute
numbers. And this allows us to provide a virtual machine image that can be
reused to reproduce our experiments.

We used JMH which contains many best practices for benchmarking on
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the JVM in its default options. We let it run warm-up iterations, checked
for stabilisation of the times, and aggregated results to counter noise from
background tasks we could not eliminate on the benchmark machine.

5.6 Related Work

Pattern matching has existed since the early ages of computer science, with
matching for tree-shaped data being first described in 1972 by Karp, Miller
and Rosenberg (1972), with performance being a key consideration from
the beginning. It was introduced to the world of programming languages
by SASL (Turner 1983) and Hope (Burstall, D. B. MacQueen and Sannella
1980). Since then, it has been one of the staples of functional programming
languages like ML and Haskell, and more recently it has been introduced to
other mainstream languages such as Python, Swift, Ruby, and Rust.

5.6.1 First-Class Pattern Matching

First-class pattern matching is a feature that so far only exists in the Stratego
language (E. Visser, Benaissa and Tolmach 1998; E. Visser 2001b; Bravenboer,
Kalleberg et al. 2008; Smits, Konat and E. Visser 2020). The core language of
Stratego is System S (E. Visser and Benaissa 1998), which first explored the
idea of separating pattern matching into operators match, scope, and choice.
E. Visser (1999) describes this unique form of pattern matching in more detail.
First-class patterns2 are a similarly named, but fundamentally different concept
to first-class pattern matching.

Cirstea, Lenglet and Moreau (2015) describe a translation from first-class
pattern matching to a regular term rewriting system, with the goal of proving
termination. This technique could in theory be applied to compile first-class
pattern matching by first transforming it into a traditional rewrite system
and then applying standard compilation techniques. However, this would
likely not lead to good results as the translation has not been designed for this
purpose and the encoding might introduce an extra overhead. The technique
also seems to require a closed world assumption, while Stratego has an open
world assumption.

5.6.2 First-Class Patterns

We consider pattern matching a first-class expression in Stratego because it is
a primitive operation in the (strategy) expression language. While it sounds
similar, first-class patterns are a very different concept, namely that patterns are
values that can be manipulated in a programming language. This idea shows
up in both the (pure) object-oriented programming world (Homer et al. 2012)
and the functional programming world (Tullsen 2000; Jay and Kesner 2009).

While this is a powerful idea, it is not directly related to first-class pattern
matching as seen this chapter. Indeed, the path polymorphism of Jay and Kes-
ner (2009) provides something more similar to the generic traversal capabilities
of Stratego, a feature we did not focus on this chapter.

2https://hackage.haskell.org/package/first-class-patterns
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Depending on the way that first-class patterns are created and used, it may
be possible to optimise the pattern match at run-time. If at run-time the
information of the different patterns is not co-located enough for a just-in-time
optimisation based on traditional pattern matching optimisation, the ideas
from this chapter can be reused to bring such information together. This would
be particularly relevant for any programming language with first-class patterns
and backtracking semantics.

5.6.3 Pattern Match Compilation

There are two main techniques that are used for compiling pattern matching to
efficient code: on the one hand, compiling to a discrimination tree (also known
as a decision tree or case tree) as pioneered by Overmars and van Leeuwen
(1979) and Hoffmann and O’Donnell (1982), and similar work on deterministic
automata by Gräf (1991), Pettersson (1992) and Nedjah, Walter and Eldridge
(1997), and on the other hand compiling to a backtracking automaton as proposed
by Augustsson (Augustsson 1984; Augustsson 1985) and further developed by
Maranget (1994) and Fessant and Maranget (2001). A backtracking automaton
has the advantage that it avoids the code duplication that can occur in the
construction of a case tree. However, to avoid this duplication it might need to
inspect the same term more than once as a result. In theory, this seems like a
classic tradeoff between code size and run-time performance. But in practice
the difference is less clear, as noted by Fessant and Maranget (2001):

However, sophisticated compilation techniques exist that minimise
the drawbacks of both approaches. [...] In the absence of a practical
comparison of full-fledged algorithms, choosing one technique or
the other reflects one’s commitment to guaranteed code size or
guaranteed runtime performance.

A third approach introduced by Jørgensen (1990) is to use partial evaluation
to compile definitions by pattern matching in a way that avoids examining
or decomposing arguments multiple times, and eliminates code duplication.
Sestoft (1996) further develops this idea and specialises the partial evaluator to
a more traditional pattern match compiler that produces a discrimination tree.
The paper notes that this tree can be further optimised by eliminating duplicate
trees through hash-consing and by replacing equality checks with switch
statements. In our prototype we use switch statements, while eliminating
duplicate trees is still left to do.

Strict vs. Lazy Evaluation. In a language that uses strict evaluation such as
Stratego, we are free to inspect the arguments of a function in any order, so
there is a lot of room for possible optimisation. This is a major advantage
over lazy languages, where changing the order of evaluation might influence
the termination of our program and hence room for optimisation is more
limited (Maranget 1992; Maranget 1994).

Pattern Match Compilation in Practice. Many programming languages compile
pattern matching into a discrimination tree, following the example of the ML
compiler (Cardelli 1984; Baudinet and D. MacQueen 1985). Other languages
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compile pattern matching to a backtracking automaton, for example RML (Pet-
tersson 1999) and OCaml. OCaml also applies several optimisations to the
control flow of the generated automata to mitigate the performance impact of
backtracking (Fessant and Maranget 2001). Finally, yet other implementations
of (mostly lazy) languages see pattern matching as mere syntactic sugar for
nested case expression, for example Lazy ML (Augustsson 1984; Augustsson
1985) and GHC. To deal with overlapping cases, Lazy ML uses a default con-
struct that triggers backtracking. In contrast, GHC expands catchall cases and
uses join points in its core language to avoid duplication of terms (Eisenberg
and GHC development team 2020). In the current Stratego implementation,
closures and their calls are computationally expensive, so a direct adaptation
of this approach would result in poor performance.

5.6.4 Heuristics

Over the years, a large number of different heuristics have been proposed
for producing better discrimination trees or matching automata, depending
on whether one wishes to optimise for code size or run-time performance.
Detailed comparisons between these different heuristics can be found in the
studies by Scott and Ramsey (1999) and Maranget (2008). Here we list some
of the most common ones, with an indication of whether they optimise for
run-time or code size:

Relevance (run-time and code size) Pick an argument position that is matched
on in a higher priority clause (Baudinet and D. MacQueen 1985).

Necessity (run-time) Pick an argument position that must be inspected by
any matching algorithm (Sekar, Ramesh and Ramakrishnan 1995; Nedjah and
de Macedo Mourelle 2001; Maranget 2008).

Large branching factor (run-time) Pick an argument position with the largest
number of distinct constructors (Cardelli 1984).

Small branching factor (code size) Pick an argument position with the smal-
lest number of distinct constructors (Baudinet and D. MacQueen 1985; Nedjah
and de Macedo Mourelle 2001).

Small arity factor (code size) Pick an argument position where the total arity
of all constructors is lowest (Baudinet and D. MacQueen 1985).

Small default (code size) Pick an argument position with the smallest number
of wildcard patterns (Baudinet and D. MacQueen 1985).

Scott and Ramsey (1999) find little difference in performance between these
heuristics for most practical examples, with a few notable exceptions. Maranget
(2008) recommends a combination of necessity, small branching factor, and
arity, but also notes that the choice depends on the specifics of the language and
the expected kinds of pattern matching code. Hence, it would be interesting
to experiment with what combination of heuristics is the most suitable for
compiling idiomatic Stratego code.
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5.7 Conclusion

We have introduced the problem of optimising first-class pattern matching as seen
in the Stratego programming language, where pattern matching is broken apart
into three constructs: match, scope, and choice. To solve this problem, we have
developed a behaviour-preserving transformation that combines these three
constructs into an intermediate representation that resembles case expressions
from functional programming, while still adhering to the local backtracking
semantics of Stratego. This allowed us to optimise first-class pattern matching
with the same techniques used for ‘regular’ pattern matching.

We still plan to make some practical improvements to our prototype im-
plementation, investigate which heuristics for the discrimination trees work
best for typical Stratego code, and investigate the addition of closed types to
Stratego and what performance effect this may have on our optimisation.

Nevertheless, our benchmarks have demonstrated that our current prototype
can already have a positive effect on the run-time performance of Stratego
programs. With a speed-up that increases with the input size, we expect
Stratego users will be willing to pay a 10% increase in compile time.
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Chapter 6

Conclusion

In order to develop software, we need tools from the domain of Programming
Languages (PL). Such PL tools include compilers and interpreters, but also
development environments that contain smart program text editors (‘editors’),
program analysis and manipulation tools (‘refactoring tools’), and live program
observers (‘debuggers’). Innovative PL tools have a large impact because every
software developer uses them. But they also have strict requirements, because
slow or buggy PL tools are a detriment to software development. Language
Workbenches (LWBs) are suites of tools that are specifically designed to create
PL tools. This dissertation has shown several improvements to the Spoofax
language workbench (Kats and E. Visser 2010) and how those may be applied
elsewhere.

6.1 Language Development Cycle(s)

Chapter 1 introduced the Language Development Cycle(s) (repeated here in
Figure 6.1), which are the feedback cycles during language development that
a LWB facilitates. In order to test a new idea for a programming language,
we need a LWB that allows us to express that idea quickly and concisely. By
providing a specification mechanism that is high-level and powerful, a LWB
can facilitate the first part of language development, where an idea is made
concrete through specification. The expressive power of the LWB facilitates the
easy and quick specification. Because the specification is high-level, it allows
us to reason about the idea more easily, and gives the LWB the opportunity
to analyse the specification to give feedback on its internal consistency. All of
this gives feedback on the idea we started out with.

Of course high-level specifications may be used to describe powerful ideas
that are difficult to implement. A LWB should also provide a means to
create an implementation from the specification. To keep the specification
and implementation in agreement, these should be compared to each other
automatically by the LWB. This can be done by explicit comparison, generation
of part of the implementation from the specification, or even by providing

Does it

make sense?

Idea

Specification

Can it be

implemented?

Can it be executed

efficiently?

Implementation

Execution

x Figure 6.1 The Language Development Cycle(s)



fully executable specifications. Looking for an executable algorithm for a
specification can lead to useful changes to the specification of the language, or
even to the fundamental idea from which we started.

The final feedback cycle comes from the performance of the implementation.
If our new language idea cannot be executed efficiently, it will be difficult to
include into useful PL tools. This will inform the way we implement, specify,
and even think about our original idea. The challenge for the LWB is to provide
the span from high-level specification capabilities all the way to a reasonably
efficient implementation capabilities.

6.2 How Language Development Cycles can be Sped Up

The main research question driving the work presented in this dissertation is:
How can the Language Development Cycle be sped up?
We have looked at different forms of speed here, from specification and devel-
opment speed through expressive power, to speed and quality of automated
feedback on specifications, and implementations, to inform our development,
and in terms of execution speed of our implementations.

FlowSpec. In particular, we now have FlowSpec, a new declarative specification
language that can describe control-flow and data-flow in a language-parametric
way. This new specification language from Chapter 2 provides expressive
power, as we can define control- and data-flow in domain terms. The Domain-
Specific Language (DSL) provides the opportunity to give error messages on
the specification in domain terms as well. These speed up the first cycle in
language development, from idea to specification.

Since FlowSpec specifications are executable, the second cycle from specific-
ation to implementation is reduced to a minimum, it is as fast as compiling
the specification. The compiler targets a runtime system that uses an efficient
worklist algorithm, and we have shown with benchmarks how this provides
reasonable performance. Therefore the final feedback cycle is also improved
by FlowSpec.

Of course, FlowSpec only influences the control- and data-flow part of a
programming language specification and the tools derived from that. Stratego
has a larger potential as the glue language of Spoofax, in which we can
implement anything that we cannot in the other meta-DSLs.

Stratego. To improve the Stratego term rewriting language, we looked at
the pain points of using the language. A large pain point for Stratego is its
slow compilation time, which frustrates the user that is trying to iterate on an
implementation to improve the quality by for example fixing bugs, mismatches
with the specification, or performance issues (in other words, the third cycle).
Although the Stratego language has features that seemingly require whole-
program compilation, we have seen in Chapter 3 that it is possible to have an
incremental Stratego compiler that is backward compatible and reuses most of
the original compiler.

To catch bugs faster than compiling and testing, a type system is valuable
to avoid type-related bugs. These are common enough in Stratego, and by
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catching them in the type system we can speed up the second and third
language development cycles. But since Stratego is dynamically typed, with
powerful generic traversals that work on any data, a strong static type system
does not fit. However, a gradual type system does. And in Chapter 4 we
have seen that the introduced gradual type system can be used to gradually
introduce a type discipline to old code, while providing a proper type system
for any new code.

In order to get to PL tools with reasonable performance, we do not only need
to catch bugs though. We also need the execution of Stratego programs to be
fast enough. Since the performance of Stratego programs leaves something to
be desired sometimes, Chapter 5 describes a way to optimise a very common
operation in Stratego: pattern matching. There are good solutions from the
Functional Programming (FP) world for optimising pattern matching, but these
do not apply directly to Stratego’s atypical first-class pattern matching. But
as we saw, we can find program fragments that map to FP’s case expressions
form of pattern matching, which allows us to apply existing optimisation
techniques.

6.3 Reflections and Future Work

We have looked at strategic improvements to a language workbench in this
dissertation. The approach to this research was that of programming systems
research, where we develop research software to the point of practically usable
tools. While this is a good test for the underlying ideas, there is a cost to such an
approach. When you work long enough on research software for it to become
practically useful, you are more likely to have to pay back some technical
debt. A long living research vehicle like the Spoofax language workbench
compounds ideas and insights, but also technical debt that at some point
cannot be ignored if you wish to keep building on it. Nevertheless, building
research software to the point of practical use provides unique insights into
what it takes for an idea to become truly beneficial to the world.

6.3.1 FlowSpec

Developing the FlowSpec DSL was a learning process in programming systems
research. Early on, the project was built upon and integrated with some young,
experimental systems within Spoofax that were under heavy development.
This slowed down the research process more than necessary (depending on
your definition of necessary).

The performance of FlowSpec as presented in this dissertation is passable,
but ultimately the analysis time will increase with the size of the program. In a
setting where small changes are made to the program, such as when a data-flow
analysis is used for an editor service, it would be better to have an incremental
analysis. In fact, even when we use data-flow analysis to inform optimisation
of a program through program transformation, we may want to do this to a
fixpoint, alternating between analysis and transformation. This would also
benefit from incremental analysis, so the FlowSpec runtime from Chapter 2 has
a serious limitation here. Thankfully, I got to supervise a Master’s thesis project
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by Matthijs Bijman, in which he designed and implemented an incremental
runtime for FlowSpec (Bijman 2022).

Both the concrete implementation of FlowSpec and the conceptual ideas
of the language can be used today, by anyone interested. Any user of the
Spoofax language workbench can now extend their language with a declarative
definition of control-flow, build data-flow analyses on top of that, and use
those analyses to their advantage. Any researcher can take the design ideas
behind the FlowSpec DSL, and remix or extend these to create an even better
meta-DSL for the declarative specification of control- and data-flow. In the
following paragraphs, I present a number of extensions for FlowSpec that I
have in mind.

Control Flow. There are many opportunities to increase the expressiveness
of the FlowSpec DSL. At the moment, FlowSpec only contains the concept
of names to manage shadowing in data-flow analyses, but its use could be
expanded for name-dependent control-flow such as labeled breaks. This
requires an association of names with parts of the Control-Flow Graph (CFG)
or Abstract Syntax Tree (AST). Unlabelled break and continue statements, as
well as return statements could be modelled with implicit, lexically scoped
names.

The finally block of a try-catch (e.g. in Java) is a particularly strange bit
of control-flow to model as it inserts itself at the end of the try and catch
blocks, and any control-flow that abruptly exits those blocks unless it is an
exception in the try block that gets caught by a catch block. Modelling this in
FlowSpec required named and parameterised control-flow rules. It would also
be interesting to allow the CFG of the finally block to be duplicated as we
know where it was entered from and where it exits to in each program trace.

Some programming languages under-specify their control-flow within ex-
pressions without side-effects1, which allows them to be executed in any order.
If we add this as a concept within control-flow in FlowSpec, we can use it to
more accurately specify control-flow of those languages. A major benefit of
adding this concept is that we could specify relaxing CFGs in FlowSpec as
well: we first build a CFG, use it for a data-flow analysis that finds control
and data dependencies between CFG nodes, and finally use the results of this
analysis to relax control-flow between sub-CFGs that are independent of each
other. Such a relaxed CFG makes it easy to move code around safely and can
be used to find optimisation opportunities.

Inter-procedural Analysis. Another limitation to the expressiveness of FlowSpec
is that it can only do intra-procedural analysis. Analysis between procedure or
function calls was out of scope for this dissertation. The interaction between
accuracy of the call graph and the cost of analysis is non-trivial: We can avoid
work if we can accurately predict which definition a dynamically dispatched
call resolves to, but accurate prediction of that requires an expensive data-flow
analysis.

1Some languages don’t even specify the order of expressions with side-effects, but let us ignore
such horrors in this instance.
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For FlowSpec, I believe that function summaries (Rountev, Ryder and Landi
1999; Schubert, Hermann and Bodden 2021) are a particularly interesting
approach to inter-procedural analysis. It would be interesting to see if the DSL
allows us to reason about user-implemented data-flow analyses, in order to
automatically derive a way to summarise them. Of course the language can
be extended to limit the way in which data-flow analyses can be specified if
that is necessary for summaries, providing high-level error messages about
why the restriction is necessary. An extension could also give the user the
ability to tweak the way summaries work, to influence trade-offs in accuracy
and efficiency that are language specific.

6.3.2 Stratego

Working on an existing programming language can be challenging because
of the constraint of backward compatibility. There are certainly properties of
the design of Stratego that can/could be improved. But depending on the
problem in question, it could be difficult to actually do something about it,
especially if there was discussion on (1) if the property was even a problem
in the first place, or (2) what the solution to the undesirable property should
be, or (3) how hard it would be to keep the solution backwards compatible.
The three chapters related to Stratego tackled problems of different natures,
where these discussions led to publishable research. This research has had
a positive effect on Stratego, but has also provided insights that are useful
beyond Stratego.

Incremental Computing. The incremental Stratego compiler is the product
of many constraints to keep the language, output and runtime backwards
compatible. In the future, there may be a point where it becomes worthwhile
to break backwards compatibility of the runtime to allow better code generation
pattern in the compiler. This would provide the opportunity to add separate
compilation support for Stratego, simplifying incremental compilation to file-
based caching and dependencies.

Nevertheless, our incremental compiler has demonstrated how building
an incremental system that is backwards compatible is possible, even when
there are severe constraints. This is an insight that I believe benefits the
world of software development at large. Existing, very useful software that
is too complex and expensive to re-implement, could be made incremental.
While the Stratego compiler is merely an exemplar, it shows how different
properties of software may influence how we can build in incrementality.
This is not an automated process, but is based a detailed analysis of the
software architecture. One clear property is that parts of the system that
follow a (mostly) pure data transformation approach can easily fit inside an
incremental system. Our approach also shows that parts of the system that rely
heavily on side-effects may be isolated and kept non-incremental. We can then
test if they become a bottleneck in the incremental process, and if necessary
consider re-implementing only that part to be more amenable to incremental
computation.
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Gradual Types. The work on Stratego’s gradual type system was started with
discussions on what we would want or expect from a type system for Stratego
(the idea phase). However, fairly quickly we found that it would be easier to
design features of the type system if we saw it in action. We decided not to use
the Statix meta-DSL in Spoofax for this because it had significant execution
speed issues at the time. Besides, we had learned from FlowSpec not to build
on overly new and experimental system for unrelated research.

The prototype implementation of the type system informed our ideas and
allowed us to iterate on the design of the type system. The evaluation of the
type system on some Stratego projects gave us confidence that our type system
implementation would be practically useful.

But the largest missing piece for Stratego’s gradual type system is correctness
proofs. Although the usual soundness of type systems does not apply to
gradual type systems directly, as New, Licata and Ahmed (2021) explain, there
are gradual type soundness theorems and the gradual guarantee, where the
latter emphasises that ‘the gradual migration process should be “smooth”’. I
would feel more confident of the consistent behaviour of Stratego’s gradual
type system if we had a definition of Stratego’s gradual type system with a
mechanised proof of gradual type soundness and the gradual guarantee and
based the implementation on this definition.

Despite that future work, researchers can take our gradual type system as
another piece of evidence that gradual types are an interesting and useful tool
to bring some of the benefits of static types to a dynamically typed language.
It combines the practical benefits of the Stratego language with previous work
on statically typed, but restricted, generic traversals. Hopefully, this sparks
renewed interest in generic programming, which can be very powerful.

6.3.3 Language Development in Spoofax

Developing research software for and inside of Spoofax has made a positive
impact on our ability to create practically usable tools. I believe that Spoofax
could be practically useful to more people outside of our research group in
Delft. But for that to happen, we would need to advertise Spoofax better, and
spend more time polishing what we currently have. Another option would be
to make the different meta-DSLs of Spoofax individually usable. Both of those
options, and the advertisements, are mostly not research. Spoofax as a research
project could use some (budget for) non-research help, as our researchers have
too little time to keep up with that work.

Typed AST Generation. There are also more research opportunities within the
Spoofax ecosystem. Grammars written in Syntax Definition Formalism (SDF)
version 3 currently produce a parser that creates an AST with a generic term
interface in Java. If we want to advertise the SDF 3 meta-DSL as a separate
product, we should generate Java types that follow the grammar, similar to
other tools (Parr and Quong 1995; Cervelle, Forax and Roussel 2006). There is
still a design space to explore here, with how we represent ambiguous parse
results, are the trees mutable or immutable (Lippert 2012), can we generate
specialised generic traversals for the trees?
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Generic Traversal Fusion. Speaking of generic traversals, there is a special
optimisation in the Stratego compiler that assumes there is an innermost generic
traversal defined with specific semantics. Based on the assumed semantics, this
optimisation fuses the generic traversal and the set of rewrite rules it is called
with, essentially putting the traversal inside of the rewrite rules (Johann and
E. Visser 2001). It would be interesting to explore whether we can generalise
this idea to any generic traversal written in System S, and when such an
optimisation would be helpful. Perhaps the same approach of looking at
System S primitives would allow us to fuse together multiple traversals into
a single one. Fusing traversals has been done before (Sakka, Sundararajah
and Kulkarni 2017; Petrashko, Lhoták and Odersky 2017), but by focussing on
System S we might be able to find a less restricted form of fusion.

Interactive Interpreters and Debuggers. The Read–Eval–Print Loop (REPL) is
an interactive interpreter that accepts program fragments of a programming
language, sometimes with slightly adapted syntax to better fit the interactive
nature. It would be nice if Spoofax got special support for creating a REPL for
a programming language. We would need to optionally define some special
grammar symbols particular to the REPL and define the start symbol for
that context. The derived parser should handle parsing line-by-line, so that
multi-line definitions in the REPL are supported out of the box. The dynamic
semantics specification of the language could be used directly to create an
interpreter. A particularly interesting question that would come up is what a
REPL for a DSL might look like. van Binsbergen et al. (2020) has some insights
to get started in this area.

An interpreter would also be a useful feature inside of an interactive debug-
ger. This is another PL tool that Spoofax should gain special support for. As
Spoofax generates plugins for different editors, it should also provide the op-
tion to plug into those editors’ interactive debugging interfaces. The interpreter
should be able to step through a program in a programming language defined
in Spoofax. The state of the program should be inspectable, for which it can be
useful to write a snippet of code in the programming language to inspect that
state. This is where the interpreter comes in. As with the interpreter, it would
be interesting what an interactive debugger for a DSL might look like.

Names and Types. Before scope graphs, Name Binding Language (NaBL)
version 2, and Statix, we had NaBL version 1 and Type System Language (TS)
in Spoofax. These older languages were less powerful and did not have a
clear, formalised semantics. Still, I yearn for their simplicity sometimes. I
would rather read the NaBL 1 code on the left than the Statix equivalent on
the right to define the rule for method names and scoping local variables:

Method(_, m, _, _):
defines method m
scopes variable

methodOk(s, Method(_, m, _, b)) :-
{s_mthd s'}
new s_mthd, !mthd[m, s_mthd] in s,
new s', s' -LEX-> s, statementOk(s', b).

A language inspired by NaBL 1 and TS, that translated to Statix, would provide
a gentler learning curve for the specification of names and types in Spoofax.
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6.4 Parting Words

The research I have presented in this dissertation improves the feedback cycles
in language development. Each piece of research includes software integrated
in the Spoofax LWB, and can be used to create the next generation of PL tools.
I hope I have inspired others with my work, to apply it in a different context,
or to try something in a similar vein. I plan to keep extolling the virtues of
Spoofax, while I continue to improve language development in it.

140 u Strategic Language Workbench Improvements



Chapter 6 U Conclusion 141





Bibliography

Allen, Frances E. and John Cocke (June 1972). ‘A catalogue of optimizing trans-
formations’. In: Design and Optimization of Compilers. 1st edition. Automatic
Computation, pages 1–30. isbn: 9780132002042 (cited on page 48).

Association for Computer Machinery (Aug. 2020). Artifact Review and Badging -
Current. url: https://www.acm.org/publications/policies/artifact-
review-and-badging-current (visited on 9th Nov. 2022) (cited on page 4).

Augustsson, Lennart (1984). ‘A Compiler for Lazy ML’. In: LISP and Functional
Programming (LFP), Proceedings, pages 218–227. doi: 10 . 1145 / 800055 .
802038 (cited on pages 128–129).

Augustsson, Lennart (1985). ‘Compiling Pattern Matching’. In: Functional Pro-
gramming Languages and Computer Architecture. Volume 201. Lecture Notes
in Computer Science, pages 368–381. doi: 10.1007/3-540-15975-4_48
(cited on pages 116, 120, 128–129).

Auslander, Marc A. and Martin Hopkins (1982). ‘An Overview of the PL.8
Compiler’. In: SIGPLAN Symposium on Compiler Construction, pages 22–31.
doi: 10.1145/800230.806977 (cited on page 16).

Backus, John Warner and William P. Heising (1964). ‘Fortran’. In: IEEE Transac-
tions on Computers 13.4, pages 382–385. doi: 10.1109/PGEC.1964.263818
(cited on pages 64, 84).

Baudinet, Marianne and David MacQueen (Dec. 1985). Tree Pattern Matching
for ML (Extended Abstract). Technical report. url: https://smlfamily.
github.io/history/Baudinet-DM-tree-pat-match-12-85.pdf (cited on
pages 120, 128–129).

Bavelas, Alex (Nov. 1950). ‘Communication patterns in task-oriented groups.’
In: The Journal of the Acoustical Society of America 22.6, pages 725–730. doi:
10.1121/1.1906679 (cited on page 46).

Bijman, Matthijs (June 2022). ‘Dataflow Analysis in a Language Workbench’.
Master’s thesis. Delft University of Technology. url: http://resolver.
tudelft.nl/uuid:1a32b1ef-524e-48bf-8588-975e0f00e71e (cited on
page 136).

Bissyandé, Tegawendé F., Ferdian Thung, David Lo, Lingxiao Jiang and Laurent
Réveillère (2013). ‘Popularity, Interoperability, and Impact of Programming
Languages in 100, 000 Open Source Projects’. In: Computer Software and
Applications Conference (COMPSAC), Proceedings, pages 303–312. doi: 10.
1109/COMPSAC.2013.55 (cited on pages 1–2).

Borovanský, Peter, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau
and Christophe Ringeissen (1998). ‘An overview of ELAN’. In: Electronic
Notes in Theoretical Computer Science 15, pages 55–70. doi: 10.1016/S1571-
0661(05)82552-6 (cited on page 111).

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/800055.802038
https://doi.org/10.1145/800055.802038
https://doi.org/10.1007/3-540-15975-4_48
https://doi.org/10.1145/800230.806977
https://doi.org/10.1109/PGEC.1964.263818
https://smlfamily.github.io/history/Baudinet-DM-tree-pat-match-12-85.pdf
https://smlfamily.github.io/history/Baudinet-DM-tree-pat-match-12-85.pdf
https://doi.org/10.1121/1.1906679
http://resolver.tudelft.nl/uuid:1a32b1ef-524e-48bf-8588-975e0f00e71e
http://resolver.tudelft.nl/uuid:1a32b1ef-524e-48bf-8588-975e0f00e71e
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1016/S1571-0661(05)82552-6
https://doi.org/10.1016/S1571-0661(05)82552-6


Bravenboer, Martin, Karl Trygve Kalleberg, Rob Vermaas and Eelco Visser
(2006). ‘Stratego/XT 0.16: components for transformation systems’. In:
Partial Evaluation and Semantics-based Program Manipulation, Proceedings,
pages 95–99. doi: 10.1145/1111542.1111558 (cited on page 116).

Bravenboer, Martin, Karl Trygve Kalleberg, Rob Vermaas and Eelco Visser
(2008). ‘Stratego/XT 0.17. A language and toolset for program transforma-
tion’. In: Science of Computer Programming 72.1-2, pages 52–70. doi: 10.1016/
j.scico.2007.11.003 (cited on pages 52, 65, 71, 90, 111, 116, 127).

Bravenboer, Martin and Yannis Smaragdakis (2009). ‘Strictly declarative specific-
ation of sophisticated points-to analyses’. In: Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Proceedings, pages 243–262.
doi: 10.1145/1640089.1640108 (cited on page 59).

Bravenboer, Martin, Arthur van Dam, Karina Olmos and Eelco Visser (2006).
‘Program Transformation with Scoped Dynamic Rewrite Rules’. In: Funda-
menta Informaticae 69.1-2, pages 123–178. url: https://content.iospress.
com / articles / fundamenta - informaticae / fi69 - 1 - 2 - 06 (cited on
pages 7, 54, 58, 65, 93, 111–112).

Bravenboer, Martin and Eelco Visser (2004). ‘Concrete syntax for objects:
domain-specific language embedding and assimilation without restric-
tions’. In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Proceedings, pages 365–383. doi: 10.1145/1028976.1029007
(cited on page 111).

Burstall, Rod M., David B. MacQueen and Donald Sannella (1980). ‘HOPE: An
Experimental Applicative Language’. In: LISP and Functional Programming
(LFP), Proceedings, pages 136–143. doi: 10.1145/800087.802799 (cited on
page 127).

Cardelli, Luca (1984). ‘Compiling a Functional Language’. In: LISP and Func-
tional Programming (LFP), Proceedings, pages 208–217. doi: 10.1145/800055.
802037 (cited on pages 120, 128–129).

Cervelle, Julien, Rémi Forax and Gilles Roussel (2006). ‘Tatoo: an innovative
parser generator’. In: Principles and Practice of Programming in Java (PPPJ),
Proceedings. Volume 178, pages 13–20. doi: 10.1145/1168054.1168057
(cited on page 138).

Checkstyle team (2018). checkstyle – Coding. url: http://checkstyle.sour
ceforge.net/config_coding.html (visited on 10th Apr. 2018) (cited on
page 16).

Cirstea, Horatiu, Sergueï Lenglet and Pierre-Etienne Moreau (2015). ‘A faithful
encoding of programmable strategies into term rewriting systems’. In:
Rewriting Techniques and Applications (RTA), Proceedings. Volume 36. LIPIcs,
pages 74–88. doi: 10.4230/LIPIcs.RTA.2015.74 (cited on page 127).

Combemale, Benoît, Olivier Barais and Andreas Wortmann (2017). ‘Language
Engineering with the GEMOC Studio’. In: International Conference on Software
Architecture Workshops (ICSAW), Proceedings, pages 189–191. doi: 10.1109/
ICSAW.2017.61 (cited on page 3).

144 u Strategic Language Workbench Improvements

https://doi.org/10.1145/1111542.1111558
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1145/1640089.1640108
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
https://content.iospress.com/articles/fundamenta-informaticae/fi69-1-2-06
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1145/800087.802799
https://doi.org/10.1145/800055.802037
https://doi.org/10.1145/800055.802037
https://doi.org/10.1145/1168054.1168057
http://checkstyle.sourceforge.net/config_coding.html
http://checkstyle.sourceforge.net/config_coding.html
https://doi.org/10.4230/LIPIcs.RTA.2015.74
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1109/ICSAW.2017.61


Cordy, James (2009). TILChairmarks. url: https://www.program-transforma
tion.org/Sts/TILChairmarks.html (visited on 26th July 2022) (cited on
page 124).

Danvy, Olivier and Lasse R. Nielsen (2004). Refocusing in Reduction Semantics.
BRICS Research Series RS-04-26. Department of Computer Science, Aarhus
University. url: https://www.brics.dk/RS/04/26/ (cited on page 6).

Denkers, Jasper, Louis van Gool and Eelco Visser (2018). ‘Migrating custom
DSL implementations to a language workbench (tool demo)’. In: Software
Language Engineering (SLE), Proceedings, pages 205–209. doi: 10 . 1145 /
3276604.3276608 (cited on page 90).

De Souza Amorim, Luis Eduardo, Sebastian Erdweg, Guido Wachsmuth and
Eelco Visser (2016). ‘Principled syntactic code completion using placehold-
ers’. In: Software Language Engineering (SLE), Proceedings, pages 163–175. doi:
10.1145/2997364.2997374 (cited on page 5).

De Souza Amorim, Luis Eduardo and Eelco Visser (2020). ‘Multi-purpose
Syntax Definition with SDF3’. In: Software Engineering and Formal Methods
(SEFM), Proceedings. Volume 12310. Lecture Notes in Computer Science,
pages 1–23. doi: 10.1007/978-3-030-58768-0_1 (cited on pages 91, 95).

Durán, Francisco, Manuel Roldán, Jean-Christophe Bach, Emilie Balland, Mark
G. J. van den Brand, James R. Cordy, Steven Eker, Luc Engelen, Maartje
de Jonge, Karl Trygve Kalleberg, Lennart C. L. Kats, Pierre-Etienne Moreau
and Eelco Visser (2010). ‘The Third Rewrite Engines Competition’. In:
Workshop on Rewriting Logic and its Applications (WRLA), Revised Selected
Papers. Volume 6381. Lecture Notes in Computer Science, pages 243–261.
doi: 10.1007/978-3-642-16310-4_16 (cited on page 124).

Eisenberg, Richard and GHC development team (May 2020). System FC, as
implemented in GHC. Technical report. url: https://gitlab.haskell.org/
ghc / ghc/ - /raw / 97655ad88c42003bc5eeb5c026754b005229800c / docs /
core-spec/core-spec.pdf (visited on 14th Feb. 2023) (cited on page 129).

Ekman, Torbjörn and Görel Hedin (2007a). ‘The JastAdd extensible Java com-
piler’. In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPLSA), Proceedings, pages 1–18. doi: 10.1145/1297027.1297029 (cited
on pages 3, 85).

Ekman, Torbjörn and Görel Hedin (2007b). ‘The JastAdd system - modular
extensible compiler construction’. In: Science of Computer Programming 69.1-3,
pages 14–26. doi: 10.1016/j.scico.2007.02.003 (cited on page 57).

Erdweg, Sebastian, Paolo G. Giarrusso and Tillmann Rendel (2012). ‘Language
composition untangled’. In: Language Descriptions, Tools, and Applications
(LDTA), Proceedings, page 7. doi: 10.1145/2427048.2427055 (cited on
page 85).

Erdweg, Sebastian, Moritz Lichter and Manuel Weiel (2015). ‘A sound and
optimal incremental build system with dynamic dependencies’. In: Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Pro-
ceedings, pages 89–106. doi: 10.1145/2814270.2814316 (cited on pages 72–
73).

Bibliography U 145

https://www.program-transformation.org/Sts/TILChairmarks.html
https://www.program-transformation.org/Sts/TILChairmarks.html
https://www.brics.dk/RS/04/26/
https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/2997364.2997374
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1007/978-3-642-16310-4_16
https://gitlab.haskell.org/ghc/ghc/-/raw/97655ad88c42003bc5eeb5c026754b005229800c/docs/core-spec/core-spec.pdf
https://gitlab.haskell.org/ghc/ghc/-/raw/97655ad88c42003bc5eeb5c026754b005229800c/docs/core-spec/core-spec.pdf
https://gitlab.haskell.org/ghc/ghc/-/raw/97655ad88c42003bc5eeb5c026754b005229800c/docs/core-spec/core-spec.pdf
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1145/2814270.2814316


Erdweg, Sebastian, Vlad A. Vergu, Mira Mezini and Eelco Visser (2014). ‘Modu-
lar specification and dynamic enforcement of syntactic language constraints
when generating code’. In: International Conference on Modularity, Proceedings,
pages 241–252. doi: 10.1145/2577080.2577089 (cited on page 111).

Fessant, Fabrice Le and Luc Maranget (2001). ‘Optimizing Pattern Matching’.
In: International Conference on Functional Programming (ICFP), Proceedings,
pages 26–37. doi: 10.1145/507635.507641 (cited on pages 116, 128–129).

Flyvbjerg, Bent (Apr. 2006). ‘Five Misunderstandings about Case-Study Re-
search’. In: Qualitative Inquiry 12.2 (cited on page 4).

Fowler, Martin (1999). Refactoring - Improving the Design of Existing Code. Ad-
dison Wesley object technology series. isbn: 978-0-201-48567-7 (cited on
page 1).

Fowler, Martin (June 2005). Language Workbenches: The Killer-App for Domain
Specific Languages? url: http://www.martinfowler.com/articles/langu
ageWorkbench.html (visited on 18th Oct. 2022) (cited on page 1).

Fowler, Martin (2010). Domain-Specific Languages (cited on page 2).
Geschke, Charles M., James H. Morris Jr. and Edwin H. Satterthwaite (Aug.

1977). ‘Early Experience with Mesa’. In: Communications of the ACM 20.8,
pages 540–553. doi: 10.1145/359763.359771 (cited on pages 64, 84).

Ginsbach, Philip, Lewis Crawford and Michael F. P. O’Boyle (2018). ‘CAnDL: a
domain specific language for compiler analysis’. In: Compiler Construction
(CC), Proceedings, pages 151–162. doi: 10.1145/3178372.3179515 (cited on
page 60).

Gosling, James, Bill Joy, Guy L. Steele Jr. and Gilad Bracha (May 2005). The
Java Language Specification. 3rd edition (cited on page 16).

Gräf, Albert (1991). ‘Left-to-Right Tree Pattern Matching’. In: Rewriting Tech-
niques and Applications. Volume 488. Lecture Notes in Computer Science,
pages 323–334. doi: 10.1007/3-540-53904-2_107 (cited on pages 116, 120,
128).

Groenewegen, Danny M., Zef Hemel, Lennart C. L. Kats and Eelco Visser
(2008). ‘WebDSL: a domain-specific language for dynamic web applica-
tions’. In: Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Companion, pages 779–780. doi: 10.1145/1449814.1449858
(cited on pages 10, 69).

Groenewegen, Danny M. and Eelco Visser (2008). ‘Declarative Access Control
for WebDSL: Combining Language Integration and Separation of Con-
cerns’. In: International Conference on Web Engineering (ICWE), Proceedings,
pages 175–188. doi: 10.1109/ICWE.2008.15 (cited on page 69).

Groenewegen, Danny M. and Eelco Visser (2013). ‘Integration of data validation
and user interface concerns in a DSL for web applications’. In: Software
and Systems Modeling 12.1, pages 35–52. doi: 10.1007/s10270-010-0173-9
(cited on page 69).

146 u Strategic Language Workbench Improvements

https://doi.org/10.1145/2577080.2577089
https://doi.org/10.1145/507635.507641
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1145/359763.359771
https://doi.org/10.1145/3178372.3179515
https://doi.org/10.1007/3-540-53904-2_107
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1109/ICWE.2008.15
https://doi.org/10.1007/s10270-010-0173-9


Grönniger, Hans, Holger Krahn, Bernhard Rumpe, Martin Schindler and Steven
Völkel (2008). ‘MontiCore: a framework for the development of textual do-
main specific languages’. In: International Conference on Software Engineering
(ICSE), Companion Volume, pages 925–926. doi: 10.1145/1370175.1370190
(cited on page 3).

Hartman, Toine (Feb. 2022). ‘Optimising First-Class Pattern Match Compil-
ation’. Master’s thesis. Delft University of Technology. url: http : / /
resolver.tudelft.nl/uuid:414026ac-b08e-49f3-8aca-1367766161bb
(cited on page 11).

Hedin, Görel (2000). ‘Reference Attributed Grammars’. In: Informatica 24.3,
pages 301–317 (cited on page 57).

Hemel, Zef, Danny M. Groenewegen, Lennart C. L. Kats and Eelco Visser
(2011). ‘Static consistency checking of web applications with WebDSL’. In:
Journal of Symbolic Computation 46.2, pages 150–182. doi: 10.1016/j.jsc.
2010.08.006 (cited on pages 111–112).

Hemel, Zef, Lennart C. L. Kats, Danny M. Groenewegen and Eelco Visser (2010).
‘Code generation by model transformation: a case study in transformation
modularity’. In: Software and Systems Modeling 9.3, pages 375–402. doi:
10.1007/s10270-009-0136-1 (cited on page 7).

Herman, David, Aaron Tomb and Cormac Flanagan (2010). ‘Space-efficient
gradual typing’. In: Higher-Order and Symbolic Computation 23.2, pages 167–
189. doi: 10.1007/s10990-011-9066-z (cited on pages 100, 108, 112).

Hills, Mark (2014). ‘Streamlining Control Flow Graph Construction with
DCFlow’. In: Software Language Engineering (SLE), Proceedings. Volume 8706.
Lecture Notes in Computer Science, pages 322–341. doi: 10.1007/978-3-
319-11245-9_18 (cited on page 60).

Hoffmann, Christoph Martin and Michael James O’Donnell (Jan. 1982). ‘Pattern
Matching in Trees’. In: Journal of the ACM 29.1, pages 68–95. doi: 10.1145/
322290.322295 (cited on page 128).

Homer, Michael, James Noble, Kim B. Bruce, Andrew P. Black and David J.
Pearce (2012). ‘Patterns as objects in grace’. In: Dynamic Languages Sym-
posium (DLS), Proceedings, pages 17–28. doi: 10.1145/2384577.2384581
(cited on page 127).

Hong, Sungpack, Hassan Chafi, Eric Sedlar and Kunle Olukotun (2012). ‘Green-
Marl: a DSL for easy and efficient graph analysis’. In: Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Proceedings,
pages 349–362. doi: 10.1145/2150976.2151013 (cited on pages 9, 45).

Hong, Sungpack, Martin Sevenich and Jan Lugt (May 2014). gm_comp, a compiler
for Green-Marl written in C++. url: https://github.com/stanford-ppl/
Green-Marl/tree/4c0d62e67d431d535ca27140df60b25c234a808b (visited
on 10th Apr. 2018) (cited on page 16).

Horwitz, Susan, Alan J. Demers and Tim Teitelbaum (1987). ‘An Efficient
General Iterative Algorithm for Dataflow Analysis’. In: Acta Informatica 24.6,
pages 679–694 (cited on page 43).

Bibliography U 147

https://doi.org/10.1145/1370175.1370190
http://resolver.tudelft.nl/uuid:414026ac-b08e-49f3-8aca-1367766161bb
http://resolver.tudelft.nl/uuid:414026ac-b08e-49f3-8aca-1367766161bb
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1016/j.jsc.2010.08.006
https://doi.org/10.1007/s10270-009-0136-1
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1007/978-3-319-11245-9_18
https://doi.org/10.1007/978-3-319-11245-9_18
https://doi.org/10.1145/322290.322295
https://doi.org/10.1145/322290.322295
https://doi.org/10.1145/2384577.2384581
https://doi.org/10.1145/2150976.2151013
https://github.com/stanford-ppl/Green-Marl/tree/4c0d62e67d431d535ca27140df60b25c234a808b
https://github.com/stanford-ppl/Green-Marl/tree/4c0d62e67d431d535ca27140df60b25c234a808b


Jay, C. Barry and Delia Kesner (2009). ‘First-class patterns’. In: Journal of Func-
tional Programming 19.2, pages 191–225. doi: 10.1017/S0956796808007144
(cited on page 127).

Jetbrains (2018). Type Checks and Casts: ’is’ and ’as’ - Kotlin Programming Language.
url: https://kotlinlang.org/docs/reference/typecasts.html#smart-
casts (visited on 12th Apr. 2018) (cited on page 20).

Johann, Patricia and Eelco Visser (2001). ‘Fusing Logic and Control with
Local Transformations: An Example Optimization’. In: Electronic Notes
in Theoretical Computer Science 57, pages 144–162. doi: 10.1016/S1571-
0661(04)00271-3 (cited on page 139).

Jørgensen, Jesper (1990). ‘Generating a Pattern Matching Compiler by Partial
Evaluation’. In: Glasgow Workshop on Functional Programming, Proceedings.
Workshops in Computing, pages 177–195. doi: 10.1007/978-1-4471-3810-
5_15 (cited on page 128).

Jourdan, Martin and Didier Parigot (1990). ‘Techniques for Improving Grammar
Flow Analysis’. In: European Symposium on Programming (ESOP), Proceedings.
Volume 432. Lecture Notes in Computer Science, pages 240–255. doi: 10.
1007/3-540-52592-0_67 (cited on page 43).

Kam, John B. and Jeffrey D. Ullman (1976). ‘Global Data Flow Analysis and
Iterative Algorithms’. In: Journal of the ACM 23.1, pages 158–171. doi: 10.
1145/321921.321938 (cited on page 43).

Kam, John B. and Jeffrey D. Ullman (1977). ‘Monotone Data Flow Analysis
Frameworks’. In: Acta Informatica 7, pages 305–317. doi: 10.1007/BF002903
39 (cited on pages 21, 23, 57).

Kaminski, Ted, Lucas Kramer, Travis Carlson and Eric Van Wyk (2017). ‘Re-
liable and automatic composition of language extensions to C: the ableC
extensible language framework’. In: Proceedings of the ACM on Programming
Languages 1.OOPSLA. doi: 10.1145/3138224 (cited on page 85).

Karp, Richard M., Raymond E. Miller and Arnold L. Rosenberg (1972). ‘Rapid
Identification of Repeated Patterns in Strings, Trees and Arrays’. In: Sym-
posium on Theory of Computing (STOC), Conference Record, pages 125–136.
doi: 10.1145/800152.804905 (cited on page 127).

Kats, Lennart C. L., Martin Bravenboer and Eelco Visser (2008). ‘Mixing source
and bytecode: a case for compilation by normalization’. In: Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Proceedings,
pages 91–108. doi: 10.1145/1449764.1449772 (cited on page 111).

Kats, Lennart C. L., Karl Trygve Kalleberg and Eelco Visser (2010). ‘Domain-
Specific Languages for Composable Editor Plugins’. In: Electronic Notes in
Theoretical Computer Science 253.7, pages 149–163. doi: 10.1016/j.entcs.
2010.08.038 (cited on page 41).

Kats, Lennart C. L., Anthony M. Sloane and Eelco Visser (2009). ‘Decorated
Attribute Grammars: Attribute Evaluation Meets Strategic Programming’.
In: Compiler Construction (CC), Proceedings. Volume 5501. Lecture Notes in
Computer Science, pages 142–157. doi: 10.1007/978-3-642-00722-4_11
(cited on page 58).

148 u Strategic Language Workbench Improvements

https://doi.org/10.1017/S0956796808007144
https://kotlinlang.org/docs/reference/typecasts.html#smart-casts
https://kotlinlang.org/docs/reference/typecasts.html#smart-casts
https://doi.org/10.1016/S1571-0661(04)00271-3
https://doi.org/10.1016/S1571-0661(04)00271-3
https://doi.org/10.1007/978-1-4471-3810-5_15
https://doi.org/10.1007/978-1-4471-3810-5_15
https://doi.org/10.1007/3-540-52592-0_67
https://doi.org/10.1007/3-540-52592-0_67
https://doi.org/10.1145/321921.321938
https://doi.org/10.1145/321921.321938
https://doi.org/10.1007/BF00290339
https://doi.org/10.1007/BF00290339
https://doi.org/10.1145/3138224
https://doi.org/10.1145/800152.804905
https://doi.org/10.1145/1449764.1449772
https://doi.org/10.1016/j.entcs.2010.08.038
https://doi.org/10.1016/j.entcs.2010.08.038
https://doi.org/10.1007/978-3-642-00722-4_11


Kats, Lennart C. L., Rob Vermaas and Eelco Visser (2011). ‘Integrated lan-
guage definition testing: enabling test-driven language development’. In:
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Proceedings, pages 139–154. doi: 10 . 1145 / 2048066 . 2048080 (cited on
page 7).

Kats, Lennart C. L. and Eelco Visser (2010). ‘The Spoofax language workbench:
rules for declarative specification of languages and IDEs’. In: Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Proceedings,
pages 444–463. doi: 10.1145/1869459.1869497 (cited on pages 3, 17, 41,
90, 111, 133).

Kieburtz, Richard B., W. Barabash and C. R. Hill (1978). ‘A Type-Checking
Program Linkage System for Pascal’. In: International Conference on Software
Engineering (ICSE), Proceedings, pages 23–28 (cited on page 84).

Kildall, Gary Arlen (1973). ‘A Unified Approach to Global Program Optimiza-
tion’. In: Principles of Programming Languages (POPL), Proceedings. POPL ’73,
pages 194–206. doi: 10.1145/512927.512945 (cited on page 57).

Kiselyov, Oleg (2010). ‘Typed Tagless Final Interpreters’. In: Spring School on
Generic and Indexed Programming (SSGIP), Revised Lectures. Volume 7470.
Lecture Notes in Computer Science, pages 130–174. doi: 10.1007/978-3-
642-32202-0_3 (cited on page 85).

Klint, Paul, Tijs van der Storm and Jurgen J. Vinju (2009). ‘EASY Meta-
programming with Rascal’. In: Generative and Transformational Techniques in
Software Engineering (GTTSE), Revised Papers. Volume 6491. Lecture Notes
in Computer Science, pages 222–289. doi: 10.1007/978-3-642-18023-1_6
(cited on pages 3, 60).

Knuth, Donald E. (1968). ‘Semantics of Context-Free Languages’. In: Theory of
Computing Systems 2.2, pages 127–145. doi: 10.1007/BF01692511 (cited on
page 57).

Kogut, Bruce and Anca Metiu (June 2001). ‘Open-Source Software Develop-
ment and Distributed Innovation’. In: Oxford Review of Economic Policy 17.2,
pages 248–264. doi: 10.1093/oxrep/17.2.248 (cited on page 2).

Konat, Gabriël, Sebastian Erdweg and Eelco Visser (2018). ‘Scalable incremental
building with dynamic task dependencies’. In: Automated Software Engineer-
ing (ASE), Proceedings, pages 76–86. doi: 10.1145/3238147.3238196 (cited
on pages 9, 65, 76, 84).

Konat, Gabriël, Michael J. Steindorfer, Sebastian Erdweg and Eelco Visser
(2018). ‘PIE: A Domain-Specific Language for Interactive Software Devel-
opment Pipelines’. In: The Art, Science, and Engineering of Programming 2.3,
page 9. doi: 10.22152/programming-journal.org/2018/2/9 (cited on
pages 65, 76, 84, 90).

Kosaraju, Sambasiva Rao (1978). ‘Strong-connectivity algorithm’. unpublished
manuscript (cited on page 46).

Lämmel, Ralf (2003). ‘Typed generic traversal with term rewriting strategies’.
In: Journal of Logic and Algebraic Programming 54.1-2, pages 1–64. doi: 10.
1016/S1567-8326(02)00028-0 (cited on pages 90, 97, 101, 111).

Bibliography U 149

https://doi.org/10.1145/2048066.2048080
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/512927.512945
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-18023-1_6
https://doi.org/10.1007/BF01692511
https://doi.org/10.1093/oxrep/17.2.248
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.1016/S1567-8326(02)00028-0
https://doi.org/10.1016/S1567-8326(02)00028-0


Lämmel, Ralf and Simon L. Peyton Jones (2003). ‘Scrap your boilerplate: a
practical design pattern for generic programming’. In: Types in Languages
Design and Implementation (TLDI), Proceedings, pages 26–37. doi: 10.1145/
604174.604179 (cited on pages 90, 111).

Lämmel, Ralf and Joost Visser (2002). ‘Typed Combinators for Generic Tra-
versal’. In: Practical Aspects of Declarative Languages (PADL), Proceedings.
Volume 2257. Lecture Notes in Computer Science, pages 137–154. doi:
10.1007/3-540-45587-6_10 (cited on pages 90, 111).

Lämmel, Ralf and Joost Visser (2003). ‘A Strafunski Application Letter’. In:
Practical Aspects of Declarative Languages (PADL), Proceedings. Volume 2562.
Lecture Notes in Computer Science, pages 357–375. doi: 10.1007/3-540-
36388-2_24 (cited on page 111).

Lippert, Eric (June 2012). Persistence, façades and Roslyn’s red-green trees. url:
https://ericlippert.com/2012/06/08/red-green-trees/ (visited on
9th Dec. 2022) (cited on page 138).

Luttik, Bas and Eelco Visser (Nov. 1997). ‘Specification of Rewriting Strategies’.
In: Theory and Practice of Algebraic Specifications, Proceedings. Electronic Work-
shops in Computing. isbn: 3540762280 (cited on page 111).

Madsen, Magnus, Ming-Ho Yee and Ondrej Lhoták (2016). ‘From Datalog to
flix: a declarative language for fixed points on lattices’. In: Programming
Language Design and Implementation (PLDI), Proceedings, pages 194–208. doi:
10.1145/2908080.2908096 (cited on page 59).

Magnusson, Eva, Torbjörn Ekman and Gorel Hedin (2007). ‘Extending Attribute
Grammars with Collection Attributes–Evaluation and Applications’. In:
Source Code Analysis and Manipulation, IEEE International Workshop on. LU-
CS-TR:2012-249 0. doi: 10.1109/SCAM.2007.13 (cited on page 57).

Magnusson, Eva and Görel Hedin (2007). ‘Circular reference attributed gram-
mars - their evaluation and applications’. In: Science of Computer Program-
ming 68.1, pages 21–37. doi: 10.1016/j.scico.2005.06.005 (cited on
page 57).

Maranget, Luc (1992). ‘Compiling Lazy Pattern Matching’. In: LISP and Func-
tional Programming (LFP), Proceedings, pages 21–31. doi: 10.1145/141471.
141499 (cited on page 128).

Maranget, Luc (1994). Two Techniques for Compiling Lazy Pattern Matching. Re-
search Report RR-2385. Projet PARA. INRIA. url: https://hal.inria.fr/
inria-00074292 (cited on pages 116, 128).

Maranget, Luc (2008). ‘Compiling pattern matching to good decision trees’. In:
Workshop on ML, Proceedings. ML’08, pages 35–46. doi: 10.1145/1411304.
1411311 (cited on pages 116, 120, 129).

Meyer, Jon and Troy Downing (1997). Java Virtual Machine. isbn: 1-56592-194-1
(cited on page 109).

Mokhov, Andrey, Neil Mitchell and Simon L. Peyton Jones (July 2018). ‘Build
systems à la carte’. In: Proceedings of the ACM on Programming Languages
2.ICFP. doi: 10.1145/3236774 (cited on page 84).

150 u Strategic Language Workbench Improvements

https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
https://doi.org/10.1007/3-540-45587-6_10
https://doi.org/10.1007/3-540-36388-2_24
https://doi.org/10.1007/3-540-36388-2_24
https://ericlippert.com/2012/06/08/red-green-trees/
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1109/SCAM.2007.13
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1145/141471.141499
https://doi.org/10.1145/141471.141499
https://hal.inria.fr/inria-00074292
https://hal.inria.fr/inria-00074292
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/3236774


Mosses, Peter D. (2004). ‘Modular structural operational semantics’. In: Journal
of Logic and Algebraic Programming 60-61, pages 195–228. doi: 10.1016/j.
jlap.2004.03.008 (cited on page 6).

Muehlboeck, Fabian and Ross Tate (2017). ‘Sound gradual typing is nomin-
ally alive and well’. In: Proceedings of the ACM on Programming Languages
1.OOPSLA. doi: 10.1145/3133880 (cited on page 112).

Nedjah, Nadia and Luiza de Macedo Mourelle (2001). ‘Improving Space,
Time, and Termination in Rewriting-Based Programming’. In: Engineering
of Intelligent Systems. Volume 2070. Lecture Notes in Computer Science,
pages 880–890. doi: 10.1007/3-540-45517-5_97 (cited on page 129).

Nedjah, Nadia, Colin D. Walter and Stephen E. Eldridge (1997). ‘Optimal
Left-to-Right Pattern-Matching Automata’. In: Algebraic and Logic Program-
ming (ALP), Proceedings. Volume 1298. Lecture Notes in Computer Science,
pages 273–286. doi: 10.1007/BFb0027016 (cited on pages 116, 120, 128).

Néron, Pierre, Andrew P. Tolmach, Eelco Visser and Guido Wachsmuth (2015).
‘A Theory of Name Resolution’. In: European Symposium on Programming
(ESOP), Proceedings. Volume 9032. Lecture Notes in Computer Science,
pages 205–231. doi: 10.1007/978-3-662-46669-8_9 (cited on pages 6, 41).

New, Max S., Daniel R. Licata and Amal Ahmed (2021). ‘Gradual type theory’.
In: Journal of Functional Programming 31. doi: 10.1017/S0956796821000125
(cited on page 138).

Nielsen, Jakob (1993). Usability engineering. isbn: 978-0-12-518405-2 (cited on
page 1).

Nielson, Flemming, Hanne Riis Nielson and Chris Hankin (2005). Principles of
program analysis (2. corr. print). doi: 10.1007/978-3-662-03811-6 (cited on
pages 16, 21, 24, 45).

Odersky, Martin and M. Zenger (2005). ‘Independently extensible solutions
to the expression problem’. In: Foundations of Object-Oriented Languages
(FOOL), Proceedings (cited on page 85).

Olmos, Karina and Eelco Visser (2005). ‘Composing Source-to-Source Data-
Flow Transformations with Rewriting Strategies and Dependent Dynamic
Rewrite Rules’. In: Compiler Construction (CC), Proceedings. Volume 3443.
Lecture Notes in Computer Science, pages 204–220. doi: 10.1007/978-3-
540-31985-6_14 (cited on pages 7, 112).

Oracle Corporation (2015a). PGX 1.1.0 Documentation – Closeness Centrality. url:
https://docs.oracle.com/cd/E56133_01/1.1.0/reference/algori
thms/closeness_centrality.html (visited on 27th Feb. 2018) (cited on
page 46).

Oracle Corporation (2015b). PGX 1.1.0 Documentation – List of Built-in Algorithms.
url: https://docs.oracle.com/cd/E56133_01/1.1.0/reference/
algorithms/index.html (visited on 27th Feb. 2018) (cited on page 50).

Overmars, Mark H and Jan van Leeuwen (1979). ‘Rapid subtree identification
revisited’. In: Technical report. url: http://www.cs.uu.nl/research/
techreps/repo/CS-1979/1979-03.pdf (cited on page 128).

Bibliography U 151

https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1145/3133880
https://doi.org/10.1007/3-540-45517-5_97
https://doi.org/10.1007/BFb0027016
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1017/S0956796821000125
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-540-31985-6_14
https://doi.org/10.1007/978-3-540-31985-6_14
https://docs.oracle.com/cd/E56133_01/1.1.0/reference/algorithms/closeness_centrality.html
https://docs.oracle.com/cd/E56133_01/1.1.0/reference/algorithms/closeness_centrality.html
https://docs.oracle.com/cd/E56133_01/1.1.0/reference/algorithms/index.html
https://docs.oracle.com/cd/E56133_01/1.1.0/reference/algorithms/index.html
http://www.cs.uu.nl/research/techreps/repo/CS-1979/1979-03.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1979/1979-03.pdf


Parr, Terence John and Russell W. Quong (1995). ‘ANTLR: A Predicated-LL(k)
Parser Generator’. In: Software: Practice and Experience 25.7, pages 789–810.
doi: 10.1002/spe.4380250705 (cited on page 138).

Pearce, David J. and James Noble (July 2011). Structural and Flow-sensitive
types for Whiley. Technical report. School of Engineering and Computer
Science, Victoria University of Wellington. url: https://ecs.wgtn.ac.nz/
foswiki/pub/Main/TechnicalReportSeries/ECSTR10-23.pdf (cited on
page 20).

Pech, Vaclav (2021). ‘JetBrains MPS: Why Modern Language Workbenches
Matter’. In: Domain-Specific Languages in Practice: with JetBrains MPS, pages 1–
22. doi: 10.1007/978-3-030-73758-0_1 (cited on page 3).

Petrashko, Dmitry, Ondrej Lhoták and Martin Odersky (2017). ‘Miniphases:
compilation using modular and efficient tree transformations’. In: Program-
ming Language Design and Implementation (PLDI), Proceedings, pages 201–216.
doi: 10.1145/3062341.3062346 (cited on page 139).

Pettersson, Mikael (1992). ‘A Term Pattern-Match Compiler Inspired by Finite
Automata Theory’. In: Compiler Construction (CC), Proceedings. Volume 641.
Lecture Notes in Computer Science, pages 258–270. doi: 10.1007/3-540-
55984-1_24 (cited on page 128).

Pettersson, Mikael (1999). ‘Compiling Pattern Matching’. In: Compiling Natural
Semantics. Volume 1549. Lecture Notes in Computer Science. Chapter 7,
pages 85–109. doi: 10.1007/10693148_7 (cited on page 129).

Red Hat, Inc. (Apr. 2018). Eclipse Ceylon: Quick Introduction. url: https://
ceylon-lang.org/documentation/1.3/introduction/#typesafe_null_
and_flow_sensitive_typing (visited on 12th Apr. 2018) (cited on page 20).

Reiss, Steven P. (1984). ‘An approach to incremental compilation’. In: Symposium
on Compiler Construction, Proceedings, pages 144–156. doi: 10.1145/502874.
502889 (cited on pages 64, 84).

Reynaud, Daniel (Mar. 2006). JasminXT Syntax. url: http://jasmin.sourcefo
rge.net/xt.html (visited on 13th Mar. 2018) (cited on page 109).

Reynolds, John C. (1983). ‘Types, Abstraction and Parametric Polymorphism’.
In: World Computer Congress (WCC), Proceedings, pages 513–523 (cited on
page 98).

Rountev, Atanas, Barbara G. Ryder and William Landi (1999). ‘Data-Flow
Analysis of Program Fragments’. In: European Software Engineering Conference
/ Foundations of Software Engineering (ESEC/FSE), Jointly Held Proceedings.
Volume 1687. Lecture Notes in Computer Science, pages 235–252. doi:
10.1007/3-540-48166-4_15 (cited on page 137).

Runeson, Per and Martin Höst (2009). ‘Guidelines for conducting and reporting
case study research in software engineering’. In: Empirical Software Engi-
neering 14.2, pages 131–164. doi: 10.1007/s10664-008-9102-8 (cited on
page 4).

Rust Project Developers (Feb. 2018). librustc – builtin lints. url: https://github.
com/rust-lang/rust/blob/67712d79451b042b6fca2167c1a57d91d86f66
3b/src/librustc/lint/builtin.rs#L76-L80 (visited on 10th Apr. 2018)
(cited on page 16).

152 u Strategic Language Workbench Improvements

https://doi.org/10.1002/spe.4380250705
https://ecs.wgtn.ac.nz/foswiki/pub/Main/TechnicalReportSeries/ECSTR10-23.pdf
https://ecs.wgtn.ac.nz/foswiki/pub/Main/TechnicalReportSeries/ECSTR10-23.pdf
https://doi.org/10.1007/978-3-030-73758-0_1
https://doi.org/10.1145/3062341.3062346
https://doi.org/10.1007/3-540-55984-1_24
https://doi.org/10.1007/3-540-55984-1_24
https://doi.org/10.1007/10693148_7
https://ceylon-lang.org/documentation/1.3/introduction/#typesafe_null_and_flow_sensitive_typing
https://ceylon-lang.org/documentation/1.3/introduction/#typesafe_null_and_flow_sensitive_typing
https://ceylon-lang.org/documentation/1.3/introduction/#typesafe_null_and_flow_sensitive_typing
https://doi.org/10.1145/502874.502889
https://doi.org/10.1145/502874.502889
http://jasmin.sourceforge.net/xt.html
http://jasmin.sourceforge.net/xt.html
https://doi.org/10.1007/3-540-48166-4_15
https://doi.org/10.1007/s10664-008-9102-8
https://github.com/rust-lang/rust/blob/67712d79451b042b6fca2167c1a57d91d86f663b/src/librustc/lint/builtin.rs#L76-L80
https://github.com/rust-lang/rust/blob/67712d79451b042b6fca2167c1a57d91d86f663b/src/librustc/lint/builtin.rs#L76-L80
https://github.com/rust-lang/rust/blob/67712d79451b042b6fca2167c1a57d91d86f663b/src/librustc/lint/builtin.rs#L76-L80


Ryan, James L., Richard L. Crandall and Marion C. Medwedeff (1966). ‘A
conversational system for incremental compilation and execution in a
time-sharing environment’. In: American Federation of Information Processing
Societies (AFIPS), Proceedings. Volume 29, pages 1–21. doi: 10.1145/1464291.
1464293 (cited on pages 64, 84).

Sakka, Laith, Kirshanthan Sundararajah and Milind Kulkarni (2017). ‘TreeFuser:
a framework for analyzing and fusing general recursive tree traversals’. In:
Proceedings of the ACM on Programming Languages 1.OOPSLA. doi: 10.1145/
3133900 (cited on page 139).

Schnoebelen, Philippe (1988). ‘Refined Compilation of Pattern-Matching for
Functional Languages’. In: Science of Computer Programming 11.2, pages 133–
159. doi: 10.1016/0167-6423(88)90002-0 (cited on page 120).

Schorre, D. Val (1964). ‘META II a syntax-oriented compiler writing language’.
In: ACM National Conference, Proceedings, page 41. doi: 10.1145/800257.
808896 (cited on page 1).

Schubert, Philipp Dominik, Ben Hermann and Eric Bodden (2021). ‘Lossless,
Persisted Summarization of Static Callgraph, Points-To and Data-Flow
Analysis’. In: European Conference on Object-Oriented Programming (ECOOP),
Proceedings. Volume 194. LIPIcs. doi: 10.4230/LIPIcs.ECOOP.2021.2 (cited
on page 137).

Scott, Kevin and Norman Ramsey (Mar. 1999). When Do Match-Compilation Heur-
istics Matter? Technical Report. University of Virginia Dept. of Computer
Science. doi: 10.18130/V3GB4M (cited on page 129).

Sekar, R. C., Ramashubramani Ramesh and I. V. Ramakrishnan (1995). ‘Adapt-
ive Pattern Matching’. In: SIAM Journal on Computing 24.6, pages 1207–1234.
doi: 10.1137/S0097539793246252 (cited on pages 120, 129).

Sestoft, Peter (1996). ‘ML Pattern Match Compilation and Partial Evaluation’.
In: Partial Evaluation. Volume 1110. Lecture Notes in Computer Science,
pages 446–464. doi: 10.1007/3-540-61580-6_22 (cited on page 128).

Shivers, Olin (1988). ‘Higher-order control-flow analysis in retrospect: lessons
learned, lessons abandoned (with retrospective)’. In: 20 Years of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
1979-1999, A Selection, pages 257–269. doi: 10.1145/989393.989421 (cited
on page 20).

Siek, Jeremy G., Ronald Garcia and Walid Taha (2009). ‘Exploring the Design
Space of Higher-Order Casts’. In: European Symposium on Programming
(ESOP), Proceedings. Volume 5502. Lecture Notes in Computer Science,
pages 17–31. doi: 10.1007/978-3-642-00590-9_2 (cited on page 101).

Siek, Jeremy G. and Walid Taha (Sept. 2006). ‘Gradual typing for functional
languages’. In: Scheme and Functional Programming Workshop. Volume 6,
pages 81–92 (cited on pages 10, 90, 99, 112).

Siek, Jeremy G. and Walid Taha (2007). ‘Gradual Typing for Objects’. In:
European Conference on Object-Oriented Programming (ECOOP), Proceedings.
Volume 4609. Lecture Notes in Computer Science, pages 2–27. doi: 10.
1007/978-3-540-73589-2_2 (cited on page 90).

Bibliography U 153

https://doi.org/10.1145/1464291.1464293
https://doi.org/10.1145/1464291.1464293
https://doi.org/10.1145/3133900
https://doi.org/10.1145/3133900
https://doi.org/10.1016/0167-6423(88)90002-0
https://doi.org/10.1145/800257.808896
https://doi.org/10.1145/800257.808896
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://doi.org/10.18130/V3GB4M
https://doi.org/10.1137/S0097539793246252
https://doi.org/10.1007/3-540-61580-6_22
https://doi.org/10.1145/989393.989421
https://doi.org/10.1007/978-3-642-00590-9_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2


Sloane, Anthony M., Matthew Roberts and Leonard G. C. Hamey (2014).
‘Respect Your Parents: How Attribution and Rewriting Can Get Along’.
In: Software Language Engineering (SLE), Proceedings. Volume 8706. Lecture
Notes in Computer Science, pages 191–210. doi: 10.1007/978- 3- 319-
11245-9_11 (cited on page 58).

Smaragdakis, Yannis and George Balatsouras (2015). ‘Pointer Analysis’. In:
Foundations and Trends in Programming Languages 2.1, pages 1–69. doi: 10.
1561/2500000014 (cited on page 59).

Smaragdakis, Yannis, Martin Bravenboer and Ondrej Lhoták (2011). ‘Pick your
contexts well: understanding object-sensitivity’. In: Principles of Programming
Languages (POPL), Proceedings, pages 17–30. doi: 10.1145/1926385.192639
0 (cited on page 21).

Smits, Jeff, Toine Hartman and Jesper Cockx (2022). ‘Optimising First-Class
Pattern Matching’. In: Software Language Engineering (SLE), Proceedings,
pages 74–83. doi: 10.1145/3567512.3567519 (cited on pages 12, 115, 189).

Smits, Jeff, Gabriël Konat and Eelco Visser (2020). ‘Constructing Hybrid Incre-
mental Compilers for Cross-Module Extensibility with an Internal Build
System’. In: The Art, Science, and Engineering of Programming 4.3, 16. doi:
10.22152/programming-journal.org/2020/4/16 (cited on pages 12, 63,
127, 189).

Smits, Jeff and Eelco Visser (2017). ‘FlowSpec: declarative dataflow analysis spe-
cification’. In: Software Language Engineering (SLE), Proceedings, pages 221–
231. doi: 10.1145/3136014.3136029 (cited on pages 18, 189).

Smits, Jeff and Eelco Visser (2020). ‘Gradually typing strategies’. In: Software
Language Engineering (SLE), Proceedings, pages 1–15. doi: 10.1145/3426425.
3426928 (cited on pages 12, 89, 189).

Smits, Jeff, Guido Wachsmuth and Eelco Visser (2020). ‘FlowSpec: A Declarat-
ive Specification Language for Intra-Procedural Flow-Sensitive Data-Flow
Analysis’. In: Journal of Computer Languages 57, 100924, page 39. doi: 10.
1016/j.cola.2019.100924 (cited on pages 12, 15, 189).

Söderberg, Emma, Torbjörn Ekman, Görel Hedin and Eva Magnusson (2013).
‘Extensible intraprocedural flow analysis at the abstract syntax tree level’.
In: Science of Computer Programming 78.10, pages 1809–1827. doi: 10.1016/
j.scico.2012.02.002 (cited on page 57).

Söderberg, Emma and Görel Hedin (2012). Incremental Evaluation of Reference
Attribute Grammars using Dynamic Dependency Tracking. Technical report 98.
Department of Computer Science, Lund University. url: https://portal.
research.lu.se/files/3312049/2543179.pdf (cited on page 84).

Szabó, Tamás, Simon Alperovich, Markus Völter and Sebastian Erdweg (2016).
‘An extensible framework for variable-precision data-flow analyses in MPS’.
In: Automated Software Engineering (ASE), Proceedings, pages 870–875. doi:
10.1145/2970276.2970296 (cited on page 59).

Szabó, Tamás, Sebastian Erdweg and Markus Völter (2016). ‘IncA: a DSL for
the definition of incremental program analyses’. In: Automated Software
Engineering (ASE), Proceedings, pages 320–331. doi: 10 . 1145 / 2970276 .
2970298 (cited on page 60).

154 u Strategic Language Workbench Improvements

https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1007/978-3-319-11245-9_11
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/3567512.3567519
https://doi.org/10.22152/programming-journal.org/2020/4/16
https://doi.org/10.1145/3136014.3136029
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1016/j.cola.2019.100924
https://doi.org/10.1016/j.cola.2019.100924
https://doi.org/10.1016/j.scico.2012.02.002
https://doi.org/10.1016/j.scico.2012.02.002
https://portal.research.lu.se/files/3312049/2543179.pdf
https://portal.research.lu.se/files/3312049/2543179.pdf
https://doi.org/10.1145/2970276.2970296
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298


Szabó, Tamás, Markus Völter and Sebastian Erdweg (2017). IncAL: A DSL for
Incremental Program Analysis with Lattices. Talk proposal; full article not
published at the time (cited on page 60).

Tarjan, Robert Endre (1972). ‘Depth-First Search and Linear Graph Algorithms’.
In: SIAM Journal on Computing 1.2, pages 146–160 (cited on pages 43, 159–
160).

TIOBE (Nov. 2022). TIOBE Index for November 2022. url: https://www.tiobe.
com/tiobe-index/ (visited on 23rd Nov. 2022) (cited on page 2).

Torgersen, Mads (2004). ‘The Expression Problem Revisited’. In: European Con-
ference on Object-Oriented Programming (ECOOP), Proceedings. Volume 3086.
Lecture Notes in Computer Science, pages 123–143. doi: 10.1007/978-3-
540-24851-4_6 (cited on page 85).

Tullsen, Mark (2000). ‘First Class Patterns’. In: Practical Aspects of Declarative
Languages (PADL), Proceedings. Volume 1753. Lecture Notes in Computer
Science, pages 1–15. doi: 10.1007/3-540-46584-7_1 (cited on page 127).

Turner, David (1983). SASL Language Manual (cited on page 127).
Van den Brand, Mark G. J., H. A. de Jong, Paul Klint and Pieter A. Olivier

(2000). ‘Efficient annotated terms’. In: Software: Practice and Experience 30.3,
pages 259–291. doi: 10.1002/(SICI)1097-024X(200003)30:3%3C259::
AID-SPE298%3E3.0.CO;2-Y (cited on page 116).

Van den Brand, Mark G. J., Arie van Deursen, Jan Heering, H. A. de Jong,
Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier,
Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser and Joost Visser (2001). ‘The
ASF+SDF Meta-environment: A Component-Based Language Development
Environment’. In: Compiler Construction (CC), Proceedings. Volume 2027.
Lecture Notes in Computer Science, pages 365–370. doi: 10.1016/S1571-
0661(04)80917-4 (cited on page 3).

Van Wyk, Eric (17th June 2019). personal correspondence (cited on page 86).
Van Wyk, Eric, Derek Bodin, Jimin Gao and Lijesh Krishnan (2010). ‘Silver: An

extensible attribute grammar system’. In: Science of Computer Programming
75.1-2, pages 39–54. doi: 10.1016/j.scico.2009.07.004 (cited on pages 3,
58, 85).

Van Antwerpen, Hendrik, Pierre Néron, Andrew P. Tolmach, Eelco Visser and
Guido Wachsmuth (2016). ‘A constraint language for static semantic analy-
sis based on scope graphs’. In: Partial Evaluation and Program Manipulation
(PEPM), Proceedings, pages 49–60. doi: 10.1145/2847538.2847543 (cited
on pages 17, 41).

Van Binsbergen, L. Thomas, Mauricio Verano Merino, Pierre Jeanjean, Tijs
van der Storm, Benoît Combemale and Olivier Barais (2020). ‘A principled
approach to REPL interpreters’. In: New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!), Proceedings, pages 84–100. doi:
10.1145/3426428.3426917 (cited on page 139).

Van Deursen, Arie, Paul Klint and Joost Visser (2000). ‘Domain-Specific Lan-
guages: An Annotated Bibliography’. In: SIGPLAN Notices 35.6, pages 26–36.
doi: 10.1145/352029.352035 (cited on page 2).

Bibliography U 155

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1007/978-3-540-24851-4_6
https://doi.org/10.1007/978-3-540-24851-4_6
https://doi.org/10.1007/3-540-46584-7_1
https://doi.org/10.1002/(SICI)1097-024X(200003)30:3%3C259::AID-SPE298%3E3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-024X(200003)30:3%3C259::AID-SPE298%3E3.0.CO;2-Y
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1145/352029.352035


Vergu, Vlad A., Pierre Néron and Eelco Visser (2015). ‘DynSem: A DSL for
Dynamic Semantics Specification’. In: Rewriting Techniques and Applications
(RTA), Proceedings. Volume 36. LIPIcs, pages 365–378. doi: 10.4230/LIPIcs.
RTA.2015.365 (cited on page 6).

Visser, Eelco (1999). ‘Strategic Pattern Matching’. In: Rewriting Techniques and
Applications (RTA), Proceedings. Volume 1631. Lecture Notes in Computer
Science, pages 30–44. doi: 10.1007/3-540-48685-2_3 (cited on pages 69,
98, 111, 127).

Visser, Eelco (2001a). ‘Scoped Dynamic Rewrite Rules’. In: Electronic Notes
in Theoretical Computer Science 59.4, pages 375–396. doi: 10.1016/S1571-
0661(04)00298-1 (cited on page 112).

Visser, Eelco (2001b). ‘Stratego: A Language for Program Transformation Based
on Rewriting Strategies’. In: Rewriting Techniques and Applications (RTA),
Proceedings. Volume 2051. Lecture Notes in Computer Science, pages 357–
362. doi: 10.1007/3-540-45127-7_27 (cited on pages 116, 127).

Visser, Eelco (Oct. 2005). ‘Transformations for Abstractions’. In: Source Code
Analysis and Manipulation (SCAM), Proceedings. doi: 10.1109/SCAM.2005.26
(cited on page 66).

Visser, Eelco (2007). ‘WebDSL: A Case Study in Domain-Specific Language
Engineering’. In: Generative and Transformational Techniques in Software Engi-
neering (GTTSE), Revised Papers. Volume 5235. Lecture Notes in Computer
Science, pages 291–373. doi: 10.1007/978-3-540-88643-3_7 (cited on
page 69).

Visser, Eelco (Jan. 2013). strategoxt/bound-unbound-vars. url: https://github.
com/metaborg/strategoxt/blob/76689003f94bcd51c84712bf4509b706d
d34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/o
pt/bound-unbound-vars.str (visited on 1st Nov. 2022) (cited on page 174).

Visser, Eelco (Feb. 2021). A Brief History of the Spoofax Language Workbench. url:
https://eelcovisser.org/blog/2021/02/08/spoofax-mip/ (visited on
9th Nov. 2022) (cited on page 4).

Visser, Eelco and Zine-El-Abidine Benaissa (1998). ‘A core language for rewrit-
ing’. In: Electronic Notes in Theoretical Computer Science 15, pages 422–441.
doi: 10.1016/S1571-0661(05)80027-1 (cited on pages 101–102, 111, 116–
118, 127).

Visser, Eelco, Zine-El-Abidine Benaissa and Andrew P. Tolmach (1998). ‘Build-
ing Program Optimizers with Rewriting Strategies’. In: International Con-
ference on Functional Programming (ICFP), Proceedings, pages 13–26. doi:
10.1145/289423.289425 (cited on pages 8, 90–91, 93, 111, 116, 127).

Visser, Eelco, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad
A. Vergu, Augusto Passalaqua and Gabriël Konat (2014). ‘A Language
Designer’s Workbench: A One-Stop-Shop for Implementation and Veri-
fication of Language Designs’. In: New Ideas, New Paradigms, and Reflec-
tions on Programming & Software (Onward!), Proceedings, pages 95–111. doi:
10.1145/2661136.2661149 (cited on page 5).

156 u Strategic Language Workbench Improvements

https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://doi.org/10.1007/3-540-48685-2_3
https://doi.org/10.1016/S1571-0661(04)00298-1
https://doi.org/10.1016/S1571-0661(04)00298-1
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1109/SCAM.2005.26
https://doi.org/10.1007/978-3-540-88643-3_7
https://github.com/metaborg/strategoxt/blob/76689003f94bcd51c84712bf4509b706dd34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/opt/bound-unbound-vars.str
https://github.com/metaborg/strategoxt/blob/76689003f94bcd51c84712bf4509b706dd34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/opt/bound-unbound-vars.str
https://github.com/metaborg/strategoxt/blob/76689003f94bcd51c84712bf4509b706dd34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/opt/bound-unbound-vars.str
https://github.com/metaborg/strategoxt/blob/76689003f94bcd51c84712bf4509b706dd34d9ab/strategoxt/stratego-libraries/strc/lib/stratego/strc/opt/bound-unbound-vars.str
https://eelcovisser.org/blog/2021/02/08/spoofax-mip/
https://doi.org/10.1016/S1571-0661(05)80027-1
https://doi.org/10.1145/289423.289425
https://doi.org/10.1145/2661136.2661149


Vogt, Harald, S. Doaitse Swierstra and Matthijs F. Kuiper (1989). ‘Higher-Order
Attribute Grammars’. In: Programming Language Design and Implementation
(PLDI), Proceedings, pages 131–145. doi: 10.1145/73141.74830 (cited on
page 57).

Vollebregt, Tobi, Lennart C. L. Kats and Eelco Visser (2012). ‘Declarative specific-
ation of template-based textual editors’. In: Language Descriptions, Tools, and
Applications (LDTA), Proceedings, pages 1–7. doi: 10.1145/2427048.2427056
(cited on page 17).

Wadler, Philip (1989). ‘Theorems for Free!’ In: FPCA, pages 347–359. doi:
10.1145/99370.99404 (cited on page 98).

Wadler, Philip (Nov. 1998). The expression problem. Java-genericity mailing list.
url: https://homepages.inf.ed.ac.uk/wadler/papers/expression/
expression.txt (visited on 16th Dec. 2019) (cited on pages 65, 85).

Wang, Yanlin and Bruno C. D. S. Oliveira (2016). ‘The expression problem,
trivially!’ In: International Conference on Modularity, Proceedings, pages 37–41.
doi: 10.1145/2889443.2889448 (cited on page 85).

Wimmer, Christian and Thomas Würthinger (2012). ‘Truffle: a self-optimizing
runtime system’. In: Systems, Programming, and Applications: Software for
Humanity (SPLASH), Proceedings, pages 13–14. doi: 10 . 1145 / 2384716 .
2384723 (cited on page 42).

Wirth, Niklaus (2007). ‘Modula-2 and Oberon’. In: History of Programming
Languages Conference (HOPL), Proceedings, pages 1–10. doi: 10.1145/123884
4.1238847 (cited on page 84).

Woerister, Michael (8th Sept. 2016). Incremental Compilation. url: https://blog.
rust- lang.org/2016/09/08/incremental.html (visited on 12th Dec.
2019) (cited on page 85).

Woerister, Michael (29th Jan. 2019). Tracking Issue for making incremental com-
pilation the default for Release Builds. url: https : / / github . com / rust -
lang/rust/issues/57968 (visited on 12th Dec. 2019) (cited on page 85).

Xie, Ningning, Xuan Bi and Bruno C. D. S. Oliveira (2018). ‘Consistent Sub-
typing for All’. In: European Symposium on Programming (ESOP), Proceed-
ings. Volume 10801. Lecture Notes in Computer Science, pages 3–30. doi:
10.1007/978-3-319-89884-1_1 (cited on page 112).

Yang, Xuejun, Yang Chen, Eric Eide and John Regehr (2011). ‘Finding and
understanding bugs in C compilers’. In: Programming Language Design and
Implementation (PLDI), Proceedings, pages 283–294. doi: 10.1145/1993498.
1993532 (cited on page 1).

Bibliography U 157

https://doi.org/10.1145/73141.74830
https://doi.org/10.1145/2427048.2427056
https://doi.org/10.1145/99370.99404
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1145/2889443.2889448
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/1238844.1238847
https://doi.org/10.1145/1238844.1238847
https://blog.rust-lang.org/2016/09/08/incremental.html
https://blog.rust-lang.org/2016/09/08/incremental.html
https://github.com/rust-lang/rust/issues/57968
https://github.com/rust-lang/rust/issues/57968
https://doi.org/10.1007/978-3-319-89884-1_1
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532




Appendix A

Adapted SCC Algorithm
and FlowSpec Case Study Listings

This appendix contains supplementary material of Chapter 2. This includes
the full pseudocode of the adapted Strongly Connected Component (SCC)
algorithm originally by Tarjan (1972), and the full FlowSpec source code of the
GreenMarl and Stratego case studies. Since the listings of this appendix are
rather long, we provide a short table of contents here.
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A.1 Strongly Connected Components

The computation of the ordering uses a slightly adapted version of Tarjan’s
strongly connected components (SCCs) algorithm (Tarjan 1972) in Listing A.1.
Tarjan’s algorithm already gives the strongly connected components in reverse
topological order. To get the topological order out, we use a stack instead of
an array to add the SCCs to when they are discovered. We also keep an extra
stack where nodes of an SCC are added in postorder, in contrast to the set or
boolean flag which is added in preorder. Since the algorithm already does a
depth-first search, this gives us a reverse (because of the stack) postorder over
the depth-first spanning forest of the SCC.

index := 0
S := empty stack
Q := empty stack
for ℓ ∈ E: // from the extremal labels of the CFG

if ℓ.index is undefined:
strongconnect(ℓ)

func strongconnect(ℓ):
ℓ.index := index
ℓ.lowlink := index
index := index + 1
ℓ.onStack := true
// Note we don't add ℓ to the SCC stack here, but the onStack marker is still
there so the algorithm works unchanged for the next loop

for (ℓ, ℓ′) ∈ F:
if ℓ′.index is undefined:

strongconnect(ℓ′)
ℓ.lowlink := min(ℓ.lowlink, ℓ′.lowlink)

else if ℓ′.onStack:
ℓ.lowlink := min(ℓ.lowlink, ℓ′.index)

// Note that we add ℓ to the SCC stack here instead, in *postorder*
S.push(ℓ)

if ℓ.lowlink = ℓ.index:
scc := empty array
do:

ℓ′ := S.pop()
ℓ′.onStack := false
scc.push(ℓ′)

while(ℓ′ ̸= ℓ)
Q.push(scc)

// output: Q, the stack of SCCs

x Listing A.1 The adapted version of Tarjan’s strongly connected components,
which gives topologically ordered strongly connected components (SCCs)
where the SCCs have reverse postorder in their depth-first spanning tree.
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A.2 GreenMarl Case Study

The following listings were used in the GreenMarl case study. They include
the control-flow specification of GreenMarl in FlowSpec, as well as analyses
(1) Live Variables, (2) Reaching Definitions, (3) Available Expressions, (4) Very
Busy Expressions, and (5) Constant Propagation.

A.2.1 Control-Flow Specification for GreenMarl

The control-flow graph rules are roughly ordered by the corresponding SDF3

files that define the abstract syntax that we match. The file starts with a module
definition and the import of the external signature definitions. Then we define
general rules for Cons and Nil, control-flow in lists assume that each element
of the list can control-flow and threads the control-flow through the list from
left to right. The root of a control-flow graph in GreenMarl is at the procedure
level. Blocks have lists of statements, so their control-flow is that of the list.
In all kinds of assignments, such as the reduce assignment and the arg-min
assignment, the right-hand side expressions are executed before the left-hand
side.

module control-data

imports
external

signatures/-
signatures/preprocess/Extra-Constructors-sig
signatures/post-analysis/-
signatures/frontend/syntax/core/-

control-flow rules // Library rules?

Cons(head, tail) =
entry -> head -> tail -> exit

Nil() = entry -> exit

control-flow rules // gm_lang

root Proc(_, params, _, _, body) =
start -> params -> body -> end

control-flow rules // Statements

Block(statements) =
entry -> statements -> exit

ReduceAssign(lhs, _, rhs, _) =
entry -> rhs -> lhs -> exit

ArgMinMax(lhs, lhss, _, rhs, rhss, _) =
entry -> rhs -> rhss -> lhs -> lhss -> exit

x Listing A.2 The Control-Flow Graph Rules for GreenMarl (1/4)
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Loops and traversals show up as loops in the control-flow graph as well.
The bounds stand in for the decision to go into the body or go on with the
program that follows the loop/traversal. Rules like the one for NoInReverse()
do not contribute nodes to the control-flow graph. Procedure calls execute
their expressions, then do the call itself by using the matched AST node as a
control-flow graph node with the this keyword. Printing has side-effects and is
therefore also itself put in the control-flow graph. Returns use the end keyword
instead of the local exit to connect to the end of the procedure enclosing (since
it declared itself a root). When an AST node is directly a control-flow graph
node and has no further control-flow inside, we can use the shortcut rule node
followed by the AST pattern.

ForEach(_, bounds, statement) =
entry -> bounds -> exit,

bounds -> statement -> bounds

BFS(bounds, statement, rev) =
entry -> bounds -> exit,

bounds -> statement -> bounds,
bounds -> rev -> bounds

DFS(bounds, statement, post) =
entry -> bounds -> exit,

bounds -> statement -> bounds,
bounds -> post -> bounds

NoInReverse() = entry -> exit

InReverse(filter, statement) =
entry -> filter -> statement -> exit

NoInPost() = entry -> exit

InPost(filter, statement) =
entry -> filter -> statement -> exit

CallStm(call) = entry -> call -> exit

ProcCallStm(_, exprs, outargs) =
entry -> exprs -> this -> outargs -> exit

Print(_, exprs) = entry -> exprs -> this -> exit

Error(expr) = entry -> expr -> this -> end

ReturnWith(_, expr) = entry -> expr -> end

Return() = entry -> end

control-flow rules // Declarations (post-analysis)

node Decl(_, _, _)

x Listing A.3 The Control-Flow Graph Rules for GreenMarl (2/4)

162 u Strategic Language Workbench Improvements



control-flow rules // Statements (core)

IfThenElse(cond, thenb, elseb) =
entry -> cond -> thenb -> exit,

cond -> elseb -> exit

While(cond, body) =
entry -> cond -> exit,
cond -> body -> cond

DoWhile(body, cond) =
entry -> body -> cond -> exit,
cond -> body

Assign(lhs, rhs) =
entry -> rhs -> lhs -> exit

node VarAssign(_)

PropAssign(r,_) = entry -> r -> this -> exit

ElementAssignWrapper(ea, _) =
entry -> ea -> exit

ElementAssign(ea,expr) =
entry -> expr -> ea -> exit

control-flow rules // Iterators

IterBounds(_, range, order) =
entry -> range -> order -> this -> exit

NoOrder() = entry -> exit

OrderBy(expr, _) =
entry -> expr -> exit

node GraphIterRange(_,_)
node NodeIterRange(_,_)
node CollectionIterRange(_,_)
node MapIterRange(_,_)

VectorIterRange(e) = entry -> e -> this -> exit

XFSIterBounds(_, range, nav) =
entry -> range -> nav -> this -> exit

node BFSRange(_,_,_)
node DFSRange(_,_,_)

NoNavigator() = entry -> exit

Navigator(expr) =
entry -> expr -> exit

x Listing A.4 The Control-Flow Graph Rules for GreenMarl (3/4)
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control-flow rules // Expressions

node IntLit(_)
node LongLit(_)
node FloatLit(_)
node DoubleLit(_)
node StringLit(_)
node NIL()
node Inf(_, _)
node True()
node False()

Abs(e) = entry -> e -> this -> exit

node VarRef(_)
Placeholder() = entry -> exit
node PropRef(_, _)
ElementAccess(ea, e) = entry -> e -> ea -> exit

UMin(e) = entry -> e -> this -> exit
Mul(e1,e2) = entry -> e1 -> e2 -> this -> exit
Div(e1,e2) = entry -> e1 -> e2 -> this -> exit
Mod(e1,e2) = entry -> e1 -> e2 -> this -> exit
Add(e1,e2) = entry -> e1 -> e2 -> this -> exit
Sub(e1,e2) = entry -> e1 -> e2 -> this -> exit
Not(e) = entry -> e -> this -> exit
And(e1,e2) = entry -> e1 -> e2 -> this -> exit
Or(e1,e2) = entry -> e1 -> e2 -> this -> exit
Eq(e1,e2) = entry -> e1 -> e2 -> this -> exit
Gt(e1,e2) = entry -> e1 -> e2 -> this -> exit
Lt(e1,e2) = entry -> e1 -> e2 -> this -> exit
Geq(e1,e2) = entry -> e1 -> e2 -> this -> exit
Leq(e1,e2) = entry -> e1 -> e2 -> this -> exit
Neq(e1,e2) = entry -> e1 -> e2 -> this -> exit

Cast(_,e) = entry -> e -> this -> exit
TerIf(e1,e2,e3) = entry -> e1 -> e2 -> exit,

e1 -> e3 -> exit

control-flow rules // Common

FuncCall(e1, _, e2) =
entry -> e1 -> e2 -> this -> exit

ProcCall(_, e, _) =
entry -> e -> this -> exit

NoOutArgs() = entry -> exit
OutArgs(outargs) = entry -> outargs -> exit
Ignore() = entry -> exit

x Listing A.5 The Control-Flow Graph Rules for GreenMarl (4/4)
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A.2.2 Live Variables Analysis Specification for GreenMarl

In the figure is a definition of a live variables that tells you which variables may
be read before being re-assigned. The Set contains the term that is the name
string from the AST. At any assignment the name is removed. At a reading
point the name is added. Information is propagated backwards so that you
can look into the future of the program when reading the analysis results.

properties

// Live Variables
live: MaySet(term)

property rules

live(VarAssign(n) -> next) =
live(next) \ { Var{n} }

live(PropAssign(_,p) -> next) =
live(next) \ { Prop{p} }

live(IterBounds(n, _, _) -> next) =
live(next) \ { Var{n} }

live(XFSIterBounds(n, _, _) -> next) =
live(next) \ { Var{n} }

live(this@PropRef(_,p) -> next) =
live(next) \/ { Prop{p} }

live(this@VarRef(n) -> next) =
live(next) \/ { Var{n} }

live(_ -> next) =
live(next)

x Listing A.6 A Live Variables Analysis for GreenMarl
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A.2.3 Reaching Definitions Analysis Specification for GreenMarl

Reaching Definitions is similar to the previous analysis but records writes to
a variable and passes these forwards. Therefore you can use this analysis at
a point where a variable is read to see where the value read there may have
originated from. Because local variable declarations are given a ‘write’ of None,
you can use this information to track down places where a variable may be
uninitialised as well. As a separate analysis this is usually known as Definite
Assignment analysis.

properties
reaching: MaySet(term * Option(index))

property rules

reaching(prev -> this@Decl(n, _, InArg())) =
{ (n, Some(indexOf(this))) } \/ reaching(prev)

reaching(prev -> this@Decl(n, _, OutArg())) =
{ (n, Some(indexOf(this))) } \/ reaching(prev)

reaching(prev -> this@Decl(n, _, Local())) =
{ (n, None()) } \/ reaching(prev)

reaching(prev -> this@VarAssign(n)) =
{ (n, Some(indexOf(this))) } \/
{ (m, l) | (m, l) <- reaching(prev), m != n }

reaching(prev -> this@PropAssign(_,p)) =
{ (p, Some(indexOf(this))) } \/
{ (m, l) | (m, l) <- reaching(prev), m != p }

reaching(prev -> this@IterBounds(n, _, _)) =
{ (n, Some(indexOf(this))) } \/
{ (m, l) | (m, l) <- reaching(prev), m != n }

reaching(prev -> this@XFSIterBounds(n, _, _)) =
{ (n, Some(indexOf(this))) } \/
{ (m, l) | (m, l) <- reaching(prev), m != n }

// note that we model output effects like printing as writing to an artificial
// variable, which allows reasoning about output dependences
reaching(prev -> this@Print(_,_)) =

{ (Print(), Some(indexOf(this))) } \/
{ (m, l) |

(m, l) <- reaching(prev),
m != Print() }

reaching(prev -> _) =
reaching(prev)

x Listing A.7 A Reaching Definitions Analysis for GreenMarl

166 u Strategic Language Workbench Improvements



A.2.4 Available Expressions Analysis Specification for GreenMarl

Available Expressions analysis uses an external property from NaBL2 to collect
references from an expression. This is used to filter any expressions that use
a name from the set when that name is assigned. We do not need to worry
about the scope of names as that is handled by NaBL2.

properties
available: MustSet(term)
external refs: Set(name)

property rules
available(prev -> _) = available(prev)

available(prev -> VarAssign(n)) =
{ expr |

expr <- available(prev),
!(Var{n} in refs(expr)) }

available(prev -> PropAssign(_,p)) =
{ expr |

expr <- available(prev),
!(Prop{p} in refs(expr)) }

available(prev -> this@IterBounds(n, _, _)) =
{ expr |

expr <- available(prev),
!(Var{n} in refs(expr)) }

available(prev -> this@XFSIterBounds(n, _, _)) =
{ expr |

expr <- available(prev),
!(Var{n} in refs(expr)) }

available(prev -> this@Abs(_)) = available(prev) \/ { this }
available(prev -> this@UMin(_)) = available(prev) \/ { this }
available(prev -> this@Mul(_,_)) = available(prev) \/ { this }
available(prev -> this@Div(_,_)) = available(prev) \/ { this }
available(prev -> this@Mod(_,_)) = available(prev) \/ { this }
available(prev -> this@Add(_,_)) = available(prev) \/ { this }
available(prev -> this@Sub(_,_)) = available(prev) \/ { this }
available(prev -> this@Not(_)) = available(prev) \/ { this }
available(prev -> this@Or(_,_)) = available(prev) \/ { this }
available(prev -> this@Eq(_,_)) = available(prev) \/ { this }
available(prev -> this@Gt(_,_)) = available(prev) \/ { this }
available(prev -> this@Lt(_,_)) = available(prev) \/ { this }
available(prev -> this@Geq(_,_)) = available(prev) \/ { this }
available(prev -> this@Leq(_,_)) = available(prev) \/ { this }
available(prev -> this@Neq(_,_)) = available(prev) \/ { this }
available(prev -> this@Cast(_,_)) = available(prev) \/ { this }
available(prev -> this@TerIf(_,_,_)) = available(prev) \/ { this }
available(prev -> this@FuncCall(_,_,_)) = available(prev) \/ { this }
available(prev -> this@ProcCall(_,_,_)) = available(prev) \/ { this }

x Listing A.8 Available Expressions Analysis for GreenMarl
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A.2.5 Very Busy Expressions Analysis Specification for GreenMarl

Very Busy Expressions analysis is very similar to Available Expressions analysis,
except is goes backwards.

properties
veryBusy: MustSet(term)

property rules
veryBusy(_ -> next) = veryBusy(next)

veryBusy(VarAssign(n) -> next) =
{ expr |

expr <- veryBusy(next),
!(Var{n} in refs(expr)) }

veryBusy(PropAssign(_,p) -> next) =
{ expr |

expr <- veryBusy(next),
!(Prop{p} in refs(expr)) }

veryBusy(this@IterBounds(n, _, _) -> next) =
{ expr |

expr <- veryBusy(next),
!(Var{n} in refs(expr)) }

veryBusy(this@XFSIterBounds(n, _, _) -> next) =
{ expr |

expr <- veryBusy(next),
!(Var{n} in refs(expr)) }

veryBusy(this@Abs(_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@UMin(_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Mul(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Div(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Mod(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Add(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Sub(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Not(_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Or(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Eq(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Gt(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Lt(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Geq(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Leq(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Neq(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@Cast(_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@TerIf(_,_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@FuncCall(_,_,_) -> next) = veryBusy(next) \/ { this }
veryBusy(this@ProcCall(_,_,_) -> next) = veryBusy(next) \/ { this }

x Listing A.9 Very Busy Expressions Analysis for GreenMarl
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A.2.6 Constant Propagation Analysis Specification for GreenMarl

The full rules for constant propagation in GreenMarl. This showcases how
much the analysis is really an abstract interpreter that is indeed just a lifted
concrete interpreter.

properties
constProp: CP

property rules

constProp(prev -> Assign(n, e)) =
match constProp(prev) with

| M1(m, v) => M(m \/ {Var{n} |-> v})
| _ => CP.top

constProp(prev -> VarRef(n)) =
addResult(

constProp(prev),
getMap(constProp(prev))[Var{n}])

constProp(prev -> Abs(_)) =
match constProp(prev) with
| M1(m, v) => M1(m, constAbs(v))
| _ => CP.top

constProp(prev -> UMin(_)) =
match constProp(prev) with
| M1(m, v) => M1(m, constUMin(v))
| _ => CP.top

constProp(prev -> Mul(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constMul(l,r))
| _ => CP.top

constProp(prev -> Div(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constDiv(l,r))
| _ => CP.top

constProp(prev -> Mod(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constMod(l,r))
| _ => CP.top

constProp(prev -> Add(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constAdd(l,r))
| _ => CP.top

constProp(prev -> Sub(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constSub(l,r))
| _ => CP.top

x Listing A.10 Constant Propagation Property Rules for GreenMarl (1/2)
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constProp(prev -> Not(_)) =
match constProp(prev) with
| M1(m, v) => M1(m, constNot(v))
| _ => CP.top

constProp(prev -> Or(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constOr(l,r))
| _ => CP.top

constProp(prev -> Eq(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constEq(l,r))
| _ => CP.top

constProp(prev -> Gt(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constGt(l,r))
| _ => CP.top

constProp(prev -> Lt(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constLt(l,r))
| _ => CP.top

constProp(prev -> Geq(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constGeq(l,r))
| _ => CP.top

constProp(prev -> Leq(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constLeq(l,r))
| _ => CP.top

constProp(prev -> Neq(_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, constNeq(l,r))
| _ => CP.top

constProp(prev -> Cast(_,_)) =
match constProp(prev) with

// not modelling casts for now
| M1(m, v) => M1(m, Const.top)
| _ => CP.top

constProp(prev -> FuncCall(_,_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, Const.top)
| _ => CP.top

constProp(prev -> ProcCall(_,_,_)) =
match constProp(prev) with
| M2(m, l, r) => M1(m, Const.top)
| _ => CP.top

constProp(prev -> _) = constProp(prev)

x Listing A.11 Constant Propagation Property Rules for GreenMarl (2/2)
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types
CPType =
| M(Map(name, Const))
| M1(Map(name, Const), ConstProp)
| M2(Map(name, Const), ConstProp, ConstProp)

ConstProp =
| Top()
| Int(int)
| String(string)
| Float(float)
| Bool(bool)
| Bottom()

functions
getMap(cpt: CPType) = match cpt with
| M(m) => m
| M1(m,_) => m
| M2(m,_,_) => m

addResult(cpt: CPType, v: Const) =
match cpt with
| M1(m, v1) => M2(m, v1, v)
| _ => M1(getMap(cpt), v)

constAbs(v: Const) = match v with
| Int(i) =>

if i < 0
then Int(-i)
else Int(i)

| Float(i) =>
if i < 0

then Float(-i)
else Float(i)

| _ => Const.top

constUMin(v: Const) = match v with
| Int(i) => Int(-i)
| Float(i) => Float(-i)
| _ => Const.top

constMul(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Int(i*j)
| (Float(i), Float(j)) => Int(i*j)
| _ => Const.top

constDiv(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Int(i/j)
| (Float(i), Float(j)) => Int(i/j)
| _ => Const.top

constMod(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Int(i%j)
| (Float(i), Float(j)) => Int(i%j)
| _ => Const.top

x Listing A.12 Constant Propagation Functions for GreenMarl (1/2)
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constAdd(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Int(i+j)
| (Float(i), Float(j)) => Int(i+j)
| _ => Const.top

constSub(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Int(i-j)
| (Float(i), Float(j)) => Int(i-j)
| _ => Const.top

constNot(v: Const) = match v with
| Bool(b) => Bool(!b)
| _ => Const.top

constOr(l: Const, r: Const) = match (l,r) with
| (Bool(i), Bool(j)) => Bool(i||j)
| _ => Const.top

constEq(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Bool(i==j)
| (Float(i), Float(j)) => Bool(i==j)
| (String(i), String(j)) => Bool(i==j)
| (Bool(i), Bool(j)) => Bool(i==j)
| _ => Const.top

constGt(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Bool(i>j)
| (Float(i), Float(j)) => Bool(i>j)
| _ => Const.top

constLt(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Bool(i<j)
| (Float(i), Float(j)) => Bool(i<j)
| _ => Const.top

constGeq(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Bool(i>=j)
| (Float(i), Float(j)) => Bool(i>=j)
| _ => Const.top

constLeq(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Bool(i<=j)
| (Float(i), Float(j)) => Bool(i<=j)
| _ => Const.top

constNeq(l: Const, r: Const) = match (l,r) with
| (Int(i), Int(j)) => Bool(i!=j)
| (Float(i), Float(j)) => Bool(i!=j)
| _ => Const.top

x Listing A.13 Constant Propagation Functions for GreenMarl (2/2)
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lattices
CP where

type = CPType

lub(l, r) = match (l,r) with
| (M(l), M(r)) => M(Map.lub(l,r))
| (M1(l, cl), M1(r, cr)) =>

M1(Map.lub(l,r), Const.lub(cl,cr))
| (M2(l, cl1, cl2), M2(r, cr1, cr2)) =>

M2(Map.lub(l,r),
Const.lub(cl1, cr1),
Const.lub(cl2, cr2))

| _ => CP.top

bottom = M(Map.bottom)

top = M(Map.top)

Const where
type = ConstProp

lub(l, r) = match (l,r) with
| (Top(), _) => Top()
| (_, Top()) => Top()
| (_, Bottom()) => l
| (Bottom(), _) => r
| (Int(i), Int(j)) => if i == j then Int(i) else Top()
| (String(i), String(j)) => if i == j then String(i) else Top()
| (Float(i), Float(j)) => if i == j then Float(i) else Top()
| (Bool(i), Bool(j)) => if i == j then Bool(i) else Top()
| _ => Top()

bottom = Bottom()

x Listing A.14 Lattice Definitions for Constant Propagation in GreenMarl
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A.3 Reaching Definitions Analysis for Stratego

Named bound-unbound-vars in the Stratego compiler (E. Visser 2013), this code
is executed on Stratego core, but—due to legacy reasons—is defined on a larger
subset of Stratego. It uses dynamic rewrite rules to encode name binding,
mixed with data-flow analysis.

module bound-unbound-vars
imports stratego/strc/lib/stratlib
strategies

mark-bound-unbound-vars =
mark-buv

mark-bound-unbound-vars-old =
if-verbose4(say(!"marking bound-unbound-vars"))
; Specification(

{| MarkVar
: at-last(Strategies(map(mark-buv)))
|}

)
; if-verbose4(say(!"marked bound-unbound-vars"))

/**
* Annotate variables with one of the annotations "bound",
* "unbound", or "(un)bound".
*
* Variables are bound in matches, used in builds, and
* refreshed in scopes. Choice operators may lead to
* a variable being bound in one path, but not in the
* other. Such variables are annotated with "(un)bound".
*/

mark-buv = //debug(!"mark-buv in: "); dr-print-rule-set(|"MarkVar"); (
mark-match
<+ mark-build
<+ mark-scope
<+ mark-let
<+ mark-traversal
<+ mark-sdef
<+ mark-rdef
<+ mark-lrule
<+ mark-srule
<+ mark-overlay
<+ mark-call
<+ mark-prim
<+ mark-rec
<+ mark-choice(mark-buv)
<+ mark-lchoice(mark-buv)
<+ mark-guardedlchoice(mark-buv)
<+ all(mark-buv)

//); debug(!"mark-buv out: "); dr-print-rule-set(|"MarkVar")

x Listing A.15 Reaching Definitions as implemented in the Stratego compiler,
written in Stratego using the dynamic rules feature. (1/5)
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strategies

DeclareUnbound =
where(!"unbound" => anno)
; ?x
; rules(MarkVar+x : Var(x) -> Var(x){anno})

IntroduceBound =
where(!"bound" => anno)
; ?x
; rules(MarkVar+x : Var(x) -> Var(x){anno})

DeclareBound =
where(!"bound" => anno)
; ?x
; rules(MarkVar.x : Var(x) -> Var(x){anno})

DeclareMaybeUnbound =
where(!"(un)bound" => anno)
; ?x
; rules(MarkVar.x : Var(x) -> Var(x){anno})

undefine-unbound-MarkVar =
where(map(

where(<mark-var> Var(<id>) => Var(_){"unbound"})
; DeclareMaybeUnbound

))

mark-var =
bagof-MarkVar; select-mark

select-mark =
?[] < fail + ?[<id>] <+ \ [Var(x) | _] -> Var(x){"(un)bound"} \

fork-MarkVar(s1, s2) =
s1 \MarkVar/ s2

strategies

mark-scope =
Scope(?xs, {| MarkVar : where(!xs; map(DeclareUnbound)); mark-buv|})

mark-match =
Match(mark-match-vars)

mark-match-vars =
Var(id) < MarkAndBind

+ App(id,id) < App(mark-buv, mark-build-vars)
+ RootApp(id) < RootApp(mark-buv)
+ all(mark-match-vars)

MarkAndBind =
try(mark-var)
; Var(DeclareBound)

x Listing A.16 Reaching Definitions as implemented in the Stratego compiler,
written in Stratego using the dynamic rules feature. (2/5)
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mark-build =
Build(mark-build-vars)

mark-build-vars =
Var(id) < mark-var

+ App(id,id) < App(mark-buv, mark-build-vars)
+ RootApp(id) < RootApp(mark-buv)
+ all(mark-build-vars)

mark-traversal =
(?All(_) + ?One(_) + ?Some(_))
; fork-MarkVar(id, one(mark-buv))

mark-call =
Call(id,id)
//; debug(!"call a: ")
///; dr-print-rule-set(|"MarkVar")
; fork-MarkVar(id, Call(id, mark-buv))
//; debug(!"call b: ")
//; dr-print-rule-set(|"MarkVar")

mark-call =
CallT(id,id,id)
//; debug(!"callt a: ")
//; dr-print-rule-set(|"MarkVar")
; fork-MarkVar(id, CallT(id, id, map(mark-build-vars)); CallT(id, mark-buv,

id))
//; debug(!"callt b: ")
//; dr-print-rule-set(|"MarkVar")

mark-call =
CallDynamic(id,id,id)
//; debug(!"callt a: ")
//; dr-print-rule-set(|"MarkVar")
; fork-MarkVar(id, CallDynamic(mark-build-vars, id, map(mark-build-vars))
; CallDynamic(id, mark-buv, id))
//; debug(!"callt b: ")
//; dr-print-rule-set(|"MarkVar")

mark-prim =
PrimT(id,id,id)
; fork-MarkVar(id, PrimT(id, id, map(mark-build-vars)); PrimT(id, mark-buv,

id))

x Listing A.17 Reaching Definitions as implemented in the Stratego compiler,
written in Stratego using the dynamic rules feature. (3/5)
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mark-let =
Let(id, id)
; where(?Let(<tvars>,_); undefine-unbound-MarkVar)
; Let(map(fork-MarkVar( mark-buv

, id))
, fork-MarkVar(id, mark-buv))

mark-sdef :
SDefT(f, as1, as2, s) -> SDefT(f, as1, as2, s')
where <map(?VarDec(<id>,_) + ?DefaultVarDec(<id>))> as2 => as2'

; {| MarkVar :
<map(IntroduceBound)> as2'
; <mark-buv> s => s'

|}

mark-rdef :
RDefT(f, as1, as2, r@Rule(t1, t2, s)) ->
RDefT(f, as1, as2, Rule(t1', t2', s'))
where <map(?VarDec(<id>,_) + ?DefaultVarDec(<id>))> as2 => as2'

; <diff>(<tvars> r, as2') => xs
; {| MarkVar :

<map(IntroduceBound)> as2'
; <map(DeclareUnbound)> xs
; <mark-match-vars> t1 => t1'
; <mark-buv> s => s'
; <mark-build-vars> t2 => t2'

|}

mark-rdef :
RDef(f, as1, r@Rule(t1, t2, s)) ->
RDef(f, as1, Rule(t1', t2', s'))
where <tvars> r => xs

; {| MarkVar :
<map(DeclareUnbound)> xs
; <mark-match-vars> t1 => t1'
; <mark-buv> s => s'
; <mark-build-vars> t2 => t2'

|}

mark-lrule :
LRule(Rule(t1, t2, s)) -> LRule(Rule(t1', t2', s'))
where {| MarkVar :

<tvars> t1; map(DeclareUnbound)
; <mark-match-vars> t1 => t1'
; <mark-buv> s => s'
; <mark-build-vars> t2 => t2'

|}

x Listing A.18 Reaching Definitions as implemented in the Stratego compiler,
written in Stratego using the dynamic rules feature. (4/5)
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mark-srule :
SRule(Rule(t1, t2, s)) -> SRule(Rule(t1', t2', s'))
where {| MarkVar :

// <tvars> t1; map(DeclareUnbound)
<mark-match-vars> t1 => t1'
; <mark-buv> s => s'
; <mark-build-vars> t2 => t2'

|}

mark-overlay :
Overlay(f, xs, t) -> Overlay(f, xs, t')
where {| MarkVar :

<map(IntroduceBound)> xs
; <mark-build-vars> t => t'

|}

mark-rec =
?Rec(_, _)
; fork-MarkVar(id, Rec(id, mark-buv))

mark-choice(uv) =
Choice(id, id)
; fork-MarkVar(Choice(uv,id), Choice(id, uv))

mark-lchoice(uv) =
LChoice(id, id)
; fork-MarkVar(LChoice(uv,id), LChoice(id, uv))

mark-guardedlchoice(uv) =
GuardedLChoice(id, id, id)
; fork-MarkVar(

GuardedLChoice(uv,id,id); GuardedLChoice(id,uv,id),
GuardedLChoice(id,id,uv)

)

x Listing A.19 Reaching Definitions as implemented in the Stratego compiler,
written in Stratego using the dynamic rules feature. (5/5)
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Appendix B

Additional Gradual Type Rules for Stratego

In this appendix we list the complete type rules for those aspects of the
language for which we have only shown excerpts in Section 4.4, or left out
entirely.
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B.1 Match Terms

Terms in match position are checked against the type of the term they are
matched against (Figure B.1). The resulting type can be a refinement, a subtype
of the input type, while the environment can contain bindings for new local
variables introduced by the match term. Casts that need to be done on subterms
are collected in a strategy expression, which others rules will schedule to be
executed after the match.

Match terms have the [wildcard], which ignore part of the term. This term
is not allowed in a build position. For string literals we check that there is a
supertype of string that is matched against, and we return the more accurate
string type.

Variables in a match term could be bound already, or not yet. However,
when the type of a variable is already known, that does not necessarily mean
it is already bound. The type information could have been discovered in the
output term of a type annotated rewrite rule, and this match could be part
of the side-condition of the rewrite rule. Therefore [mvar1] will compute a
coercion cast the variable with that coercion after the match. If the variable
was previously unbound, this cast will do the required dynamic type check. If
the variable was already bound, it was already of the right type and the cast
will succeed by default. The [mvar2] rule discovers a new variable and simply
records its type.

Constructors can be matched against dynamically and statically typed terms,
which is what the [mconstr1] and [mconstr2] rules correspond to. In a dy-
namically typed context, we only require a constructor of the right arity to
exist, and for all the subterms to type-check. In a statically typed context we
need a constructor where the subterms can type-check against the types of
the constructor definition, and the sort of the constructor is a subtype of the
type of the term matched against. This rule is algorithmic as long as it is
forbidden to define multiple constructors of the same arity on sorts where one
the subtype of another.

Finally, type ascription will test the ascribed term under the type that was
ascribed, and then test that this ascription makes sense in the context with a
cast in [mascr].
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Match term typing Γ; t ⊢m e⇒ e; s ⊣ Γ; t

Γ1; t1 ⊢m _⇒ _; id ⊣ Γ1; t1
[wildcard]

Γ1 ⊢ string <: t1

Γ1; t1 ⊢m sl⇒ sl; id ⊣ Γ1; string
[mstr]

Γ1 ⊢ t1 ⇝ t2 : c

Γ1, x : t2; t1 ⊢m x ⇒ x; <cast(c)> x ⊣ Γ1, x : t2; t1
[mvar1]

Γ1; t1 ⊢m x ⇒ x; id ⊣ Γ1, x : t1; t1
[mvar2]

len(e1) = j Γ1 = Γ′1, f j : t1 → t1

Γ1; ? ⊢m
⊢m e1 ⇒ e2; s ⊣ Γ3; t2

Γ1; ? ⊢m f (e1)⇒ f (e2); s ⊣ Γ3; ?
[mconstr1]

len(e1) = j Γ1 = Γ′1, f j : t1 → t2

Γ1; t1 ⊢m
⊢m e1 ⇒ e2; s ⊣ Γ2; t2 Γ2 ⊢ t2 <: t1

Γ1; t1 ⊢m f (e1)⇒ f (e2); s ⊣ Γ2; t2
[mconstr2]

Γ1; t2 ⊢m e1 ⇒ e2; s ⊣ Γ2; t3 Γ2 ⊢ t1 ⇝ t2 : c

Γ1; t1 ⊢m e1 :: t2 ⇒ x@e2; (<cast(c)> x; s) ⊣ Γ2; t3
[mascr]

x Figure B.1 Algorithmic typing rules for the core Stratego terms in match
position. Alternative rules are tried in order.
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B.2 Type Inference and Control Flow

We take into account that local variables may be used in different branches of
the control-flow with different types, and support such flow-sensitive types:
local-variable-type-inference: a -> b
where if <s> a

then c := <returns-a-list> a
; <map(do-something)> c // c :: List(?)

else c := <returns-a-pair> a
; <Snd; do-something> c // c :: ? * ?

end
; b := <something-else> c // c :: ?
Since something-else could handle both lists and pairs, this can work out fine.
In the future we may explore an extension of the type system with union types
to more accurately models such situations. The flow-sensitive typing is realised
by the least upper bound operation in the rule for guarded choice (to which
the if-then-else construct desugars).

B.3 Strategies

The [fail] rule in Figure B.2 overrides the current type with ↑, a type compatible
with any other type without need for casts. Our least-upper-bound operator is
biased against producing this type. The [id] rule passes it’s inputs as expected.

The [scope1] and [scope2] rules makes a variable x fresh for the scope of the
body. This means it is unbound in the environment for the strategy in the
scope. We ignore the type that it is bound to after the strategy, and reinstate
the old binding. The [seq] rule sequences by threading the environment and
current type through.

The [guardedchoice] rule may appear the same as [seq] rule, but passes the
original environment and current type to the s3 branch. The environments
and current types of the s2 and s3 branches are merged afterwards with a
least-upper-bound. The environments can only differ in local variable bindings
at this point, where all bindings are kept and duplicate ones are merged by
least-upper-bound.
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Strategy typing Γ; t ⊢ s⇒ s ⊣ Γ; t

Γ; t ⊢ fail⇒ fail ⊣ Γ; ↑
[fail]

Γ; t ⊢ id⇒ id ⊣ Γ; t
[id]

Γ1; t1 ⊢m e1 ⇒ e2; s ⊣ Γ2; t2

Γ1; t1 ⊢ ?e1 ⇒ ?x@e2; s; !x ⊣ Γ2; t2
[match]

Γ1; t1 ⊢b e1 ⇒ e2 ⊣ Γ2; t2

Γ1; t1 ⊢ !e1 ⇒ !e2 ⊣ Γ2; t2
[build]

Γ1; t1 ⊢ s1 ⇒ s2 ⊣ Γ2, x : t′0; t2

Γ1, x : t0; t1 ⊢ {x : s1}⇒ {x : s2} ⊣ Γ2, x : t0; t2
[scope1]

Γ1; t1 ⊢ s1 ⇒ s2 ⊣ Γ2, x : t; t2

Γ1; t1 ⊢ {x : s1}⇒ {x : s2} ⊣ Γ2; t2
[scope2]

Γ1; t1 ⊢ s1 ⇒ s3 ⊣ Γ2; t2 Γ2; t2 ⊢ s2 ⇒ s4 ⊣ Γ3; t3

Γ1; t1 ⊢ s1 ; s2 ⇒ s3 ; s4 ⊣ Γ3; t3
[seq]

Γ1; t1 ⊢ s1 ⇒ s4 ⊣ Γ2; t2 Γ2; t2 ⊢ s2 ⇒ s5 ⊣ Γ3; t3
Γ1; t1 ⊢ s3 ⇒ s6 ⊣ Γ4; t4

Γ1; t1 ⊢ s1 < s2 + s3 ⇒ s4 < s5 + s6 ⊣ Γ3 ⊔ Γ4; t3 ⊔ t4
[guardedchoice]

len(s1) = j len(e1) = k Γ1 = Γ′1, f j,k : (st|t) t1 → t2

Γ1; st ⊢sa
⊢sa s1 ⇒ s2 ⊣ Γ2 Γ2; t ⊢b

⊢b e1 ⇒ e2 ⊣ Γ3 Γ3 ⊢ t0 ⇝ t1 : c

Γ1; t0 ⊢ f (s1|e1)⇒ cast(c); f (s2|e2) ⊣ Γ3; t2
[call1]

len(s1) = j len(e1) = k Γ1 = Γ′1, f0,0 : ?

Γ′1, f j,k : (?|?) ?→ ?; ? ⊢sa
⊢sa s1 ⇒ s2 ⊣ Γ2 Γ2; ? ⊢b

⊢b e1 ⇒ e2 ⊣ Γ3

Γ1; t1 ⊢ f (s1|e1)⇒ f (s2|e2) ⊣ Γ3; ?
[call2]

x Figure B.2 Algorithmic typing rules for the core Stratego strategy expressions.
Alternative rules are tried in order.
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